- 博客(12)
- 收藏
- 关注
原创 考研数据结构Part3——二叉树知识点总结
char data;时间复杂度分析:所有遍历算法的时间复杂度均为O(n),其中n为节点数量空间复杂度分析递归遍历:O(h),h为树高(递归栈空间)非递归中序遍历:O(h)(栈空间)层序遍历:O(w),w为树的最大宽度(队列空间)实用技巧先序+中序或后序+中序可以唯一确定一棵二叉树递归算法简洁但可能存在栈溢出风险,非递归算法更安全销毁二叉树务必使用后序遍历,避免内存泄漏。
2025-08-29 17:23:37
1009
原创 考研数据结构Part2——栈、队列知识点总结
本文介绍了三种常见线性数据结构(顺序栈、循环队列、链式队列)的代码实现。顺序栈采用数组存储,通过top指针管理栈顶操作;循环队列通过数组和front/rear指针实现环形结构,避免假溢出;链式队列则使用单链表结构实现。文章详细列出了各数据结构的定义、初始化、判空、入/出操作等核心函数实现,并对比了不同初始值对栈操作的影响。附录提供了完整的循环队列和链式队列测试代码,展示了基本操作的执行过程。
2025-08-24 09:46:46
430
原创 考研数据结构Part1——单链表知识点总结
本文系统总结了带头结点单链表的基本操作,包括初始化、头插/尾插创建、查找(按位/按值)、插入删除等核心算法,提供了完整的C语言实现代码。通过比较链表长度实现相同节点查找功能,并给出了主函数测试示例。文章强调带头结点链表在统一操作和简化代码方面的优势,归纳了常见操作中的易错点(如头插法顺序、尾指针处理等),并提供了应试技巧(画图分析、边界条件检查)。这些内容是数据结构学习的重点,也是考研备考的关键知识点。
2025-07-22 21:08:37
450
原创 如何在服务器后台运行Python脚本,并配置虚拟环境与GPU支持
通过本文,我们学习了如何从头安装 Miniconda,创建一个名为test的虚拟环境,并使用start.sh脚本在服务器后台运行 Python 脚本。自动激活指定的 Conda 虚拟环境;检查 GPU 是否可用,并确认 GPU 分配是否正确;检查是否已有任务在运行,如果有则终止;后台运行 Python 脚本,并将日志保存到文件。希望本文对你有所帮助!如果你有其他问题或建议,欢迎在评论区留言!
2025-05-04 14:24:09
1493
原创 Linux常用命令及Python开发命令汇总
150条Linux常用命令涵盖了从基本的文件操作到Python项目开发中的具体应用,熟练掌握这些命令可以极大提高开发效率,助力您的项目顺利进行。希望本文能为您的学习提供帮助,如果您有其他问题或建议,欢迎在评论区留言交流!
2025-05-04 01:07:59
1144
原创 YOLOv11+Miniconda+Pytorch环境配置与安装,虚拟环境使用的常见问题总结
在运行YOLOv11项目,以及运行一些Python项目过程中,遇到问题的一些经验总结,如有不足请多包涵,欢迎各位大佬批评指正。
2025-04-16 23:25:28
1313
原创 Paraformer与SenseVoice介绍、FunASR软件包介绍语音识别模型库
Paraformer是一种非自回归端到端语音识别模型。非自回归模型相比于目前主流的自回归模型,可以并行的对整条句子输出目标文字,特别适合利用GPU进行并行推理。Paraformer是目前已知的首个在工业大数据上可以获得和自回归端到端模型相同性能的非自回归模型。配合GPU推理,可以将推理效率提升10倍,从而将语音识别云服务的机器成本降低接近10倍。
2025-01-25 23:44:17
6019
原创 “Datawhale X 魔搭” AI夏令营第四期:AIGC方向——Task2&Task3
AIGC(AI-Generated Content)是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。例如,通过输入关键词、描述或样本,AIGC可以生成与之相匹配的文章、图像、音频等。Deepfake是一种使用人工智能技术生成的伪造媒体,特别是视频和音频,它们看起来或听起来非常真实,但实际上是由计算机生成的。这种技术通常涉及到深度学习算法,特别是生成对抗网络(GANs),它们能够学习真实数据的特征,并生成新的、逼真的数据。
2024-08-13 23:15:08
2214
原创 “Datawhale X 魔搭” AI夏令营第四期:AIGC方向——学习笔记
参赛者需在可图Kolors 模型的基础上训练LoRA 模型,生成无限风格,如水墨画风格、水彩风格、赛博朋克风格、日漫风格......基于LoRA模型生成 8 张图片组成连贯故事,故事内容可自定义;基于8图故事,评估LoRA风格的美感度及连贯性 样例:偶像少女养成日记 根据上面的速通教程即可完成baseline的训练,对其中的几个名词进行解释: 按教程在官网上报名即可。 1. PAI-DSW(Data Science Workshop) PAI-DSW是一款为AI开发者量身定制
2024-08-11 00:20:20
520
原创 Datawhale2024年AI夏令营第二期:CV图像--task3
首先采用了baseline进行跑通,采用resnet18模型,训练了train数据集前1000张,大概耗时5分钟,得到的最终分数为 0.577。原因可能是该模型的网络深度较浅,训练的数据集过少,导致结果的acc不高。后来查阅网上资料发现,以及借鉴了。使用timm库中的efficientnet_b0模型,训练数据集前3000张、训练轮数epoch=2、每批数据量batch_size=70、发现这个模型在该问题上具有较好的性能和鲁棒性,得到最终分数为0.801。
2024-07-20 23:37:17
672
原创 Datawhale2024年AI夏令营第二期:CV图像--学习笔记
所谓Deepfake,就是一种使用人工智能技术生成的伪造媒体,特别是视频和音频,它们看起来或听起来非常真实,但实际上是由计算机生成的,例如AI换脸技术、语音模拟等。该技术虽然在多个领域展现出其创新潜力,但其滥用也带来了一系列严重的危害。Deepfake作为快速发展的新兴领域,如何快速的识别图像是否为deepfake是新型问题,也是重难点。如何提高模型的精度,主要可以从选择合适的神经网络模型和数据增强两方面入手,前者又可以通过调整模型参数、改进网络结构等方法,后者考虑几何变换、颜色变换、自动增强等方法。
2024-07-14 16:41:12
2543
原创 Datawhale夏令营2024-分子预测赛学习笔记
在当今科技日新月异的时代,人工智能(AI)技术在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。本次大赛聚焦于运用先进的人工智能算法预测其降解效能,旨在激发参赛者创新思维,推动AI技术与化学生物学的深度融合,进一步提升药物研发效率与成功率,为人类健康事业贡献智慧力量。
2024-07-07 19:41:27
1931
机器学习线性回归与分类算法详解,基于b站吴恩达教授的机器学习课程,up自己做的学习笔记
2025-08-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅