关于caffe2

1.前言:结合网络新闻与贾杨青教授摘录些caffe2的功能特点。

Caffe是由伯克利人工智能研究实验室开发的深度学习框架,Caffe2是Caffe框架的升级版,将拥有更大的组织计算灵活性。***专注于移动端的开发与优化.***它用途广泛,例如支持开发者制造聊天机器人,连接物联网服务,使用机器翻译和语音,以及医用图片识别算法等。

2.Facebook宣布开源Caffe2

  据外媒4月18日报道,在刚刚结束的2017 F8开发者大会上,Facebook和高通宣布将合作优化Caffe2和骁龙NPE (神经处理引擎)软件框架。同时,高通神经处理器开发工具包支持Caffe2和谷歌TensorFlow。它使软件与神经网络数据单元紧密相关,采用顶端高通骁龙Snapdragon 835集成系统芯片。神经处理器开发工具包将于7月面世。高通的芯片已应用于数以百万计的安卓系统。
 据英国媒体4月19日报道,在Facebook F8开发者大会上,Facebook宣布开源Caffe2深度学习框架,用于人工智能模型和应用开发。

3.caffe2的特性

caffe2是一个轻量级和模块化的深度学习框架,强调便携性,同时保持可扩展性和性能。 ​​​​
Caffe2的特性:
- Caffe2框架可以通过一台机器上的多个GPU或具有一个及多个GPU的多台机器来进行分布式训练。(多 GPU 和多主机处理)
- 也可以在iOS系统、Android系统和树莓派(Raspberry Pi)上训练和部署模型。
- 只需要运行几行代码即可调用Caffe2中预先训练好的Model Zoo模型。
- Caffe2框架已经应用在Facebook平台上。
- NVIDIA(英伟达),Qualcomm(高通),Intel(英特尔),Amazon(亚马逊)和Microsoft(微软)等公司的云平台都已支持Caffe2。
- GitHub上有Caffe2的源代码。

4.新功能

Caffe2 采用了更现代的计算图(computation graph)来表征神经网络或者包括集群通信和数据压缩在内的其它计算。这一计算图采用「算子」(operator)的概念:在给定输入的适当数量和类型以及参数的情况下,每个算子都包含了计算输所必需的逻辑。尽管 Caffe 中的层总是采用张量(矩阵或多维数组),但 Caffe2 中的算子可采用并产生包含随意对象的「blob」,这一设计使得很多过去在 Caffe 中不可实现的事情成为可能:

(1)CNN 分布式训练可由单个计算图表征,不管是在一个或多个 GPU 还是在多台机器上训练。这对 Facebook 规模的深度学习应用很关键。
(2)在专业硬件上轻松进行异构计算。例如,在 iOS 上,Caffe2 计算图可从 CPU 获取图像,将其转化为 Metal GPU 缓存对象,并将计算完全保留在 GPU 上,以获得最大吞吐量。
(3)更好地管理运行时间资源,比如使用 memonger 优化静态内存,或者预打包训练网络以获得最佳性能。
(4)float、float16、int8 混合精度和其他量化模型的计算。
Caffe2 有超过 400 个算子,具备广泛的功能。你可以浏览算子目录(Operators Catalogue)、查看稀疏操作(Sparse Operations)并学习如何编写自定义算子(CustomOperators)。

5.参考链接

https://zhuanlan.zhihu.com/p/26474272 http://news.cnfol.com/it/20170420/24621530.shtml
http://www.sohu.com/a/134971363_610300

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值