深度学习 caffe
文章平均质量分 87
伊伊note
分享点滴成长印记,结识远方的你~欢迎关注我的个人公众号snjs_ting,扫头像亦可。
展开
-
图像的像素,灰度与表示(CNN前奏)
近来实习,方觉课堂上学的太少,完全不够用,虽然我是个乖乖女,呜呜~~~~(>_系列文章希望记录CNN时尚图片分类识别全过程,持续更新中(偷笑),如有共同学习的可以发邮件加友交流1354008726@qq.com。第一篇 图像的像素,灰度与表示因为要学习下图片识别嘛,第一个问题就是图像的表示,很有意思的感觉~一、灰度是什么?1.从黑白图像讲起,顾名思义,只有两种原创 2016-11-23 23:22:15 · 7891 阅读 · 0 评论 -
深度学习与卷积神经网络(直观理解)
好吧,读了男神哥哥们的博客,自己写不来更好的。附上链接:卷积神经网络(CNN)新手指南 http://blog.csdn.net/real_myth/article/details/52273930; 深度学习笔记整理系列:http://blog.csdn.net/zouxy09/article/details/8775360 ;http://xiahouzuoxin.git原创 2016-11-24 10:16:09 · 2530 阅读 · 0 评论 -
FCN与图像语义分割小结(学习初步指引)
作者:yiyisunshine 出处:http://blog.csdn.net/yiyisunshine/article/details/62895740学习了几天FCN后,有必要进行一下整理了,也希望能帮助到看到此篇文章的人~学习步骤:此前你一定理解了CNN吧,如果没有的话,先去看Lenet和Alexnet好啦…1.细读CNN–FCN的开山之作Fully Convolutional Networ原创 2017-03-17 19:27:06 · 5663 阅读 · 0 评论 -
关于caffe2
1.前言:结合网络新闻与贾杨青教授摘录些caffe2的功能特点。Caffe是由伯克利人工智能研究实验室开发的深度学习框架,Caffe2是Caffe框架的升级版,将拥有更大的组织计算灵活性。***专注于移动端的开发与优化.***它用途广泛,例如支持开发者制造聊天机器人,连接物联网服务,使用机器翻译和语音,以及医用图片识别算法等。2.Facebook宣布开源Caffe2 据外媒4月18日报道,在刚刚原创 2017-04-20 16:38:08 · 2326 阅读 · 0 评论 -
caffe solver.prototxt部分关键参数设置
假设整体训练样本60000个,验证样本40000个 1. 训练样本有关的参数: batch_size:600 所以,需要迭代60000/600=100次才能完成一次遍历训练,即一个epoch。 因此,test_interval设置为大于或者等于100再进行验证。当然你可以训练多个epoch,比如100个,这时max_iter设为10000. 2. 验证时的有关参数: batc原创 2017-05-02 15:18:52 · 1714 阅读 · 0 评论 -
【Caffe】Blobs数据结构的Python表示
注:本文转载自http://blog.csdn.net/jinxueliu31/article/details/52066709 Caffe主要处理两种形式的数据流: 1. 图像和标签在网络上的传输,随着网络的传输,它们转化更高层次的表示,最终以得分或者概率值的形式输出。 2. 第二种数据流,主要保存各个网络层的参数,比如卷积层的weights和bias. 这些值是随着的网络的训练过程不断转载 2017-05-02 14:56:18 · 1055 阅读 · 0 评论 -
【目标检测】RCNN算法详解
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. Region C转载 2017-03-24 11:19:40 · 795 阅读 · 0 评论 -
CNN的重点整理
卷积神经网络:深度学习常用的特征提取方法转载通俗理解卷积神经网络 - Loving_Forever_的博客 - 博客频道 - CSDN.NEThttp://blog.csdn.net/loving_forever_/article/details/523898621.常用的非线性激活函数: sigmoid、tanh、relu等等,前两者sigmoid/tanh比较常见于转载 2016-11-20 23:00:41 · 1206 阅读 · 0 评论 -
机器学习 深度学习 计算机视觉 资料汇总
Deep Learning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有softw转载 2017-03-13 14:35:15 · 1629 阅读 · 0 评论 -
caffe各层参数详解(读文档记录)
前言:利用caffe工具来完成自己的模型搭建与训练,层级参数还是需要好好理解的,以便进行配置文件prototxt 的编写。 数据层数据层是每一个模型的底层,我们需要通过它完成blobs格式数据的上传。需要注意数据层的某些参数实现数据的预处理(减去均值,放大缩小,剪裁,镜像等)。数据层的数据来源:主要是数据库(leverDB和LMDB),此时数据层的type:“Data”。top和bottom:原创 2017-03-13 14:20:00 · 3595 阅读 · 0 评论 -
windows10下利用caffe model训练自己的数据
注:本篇为了完整性,现先写简单概念,下一篇详细总结caffe网络模型各层参数。一、背景知识1.caffe源码结构与核心概念:附计算所刘昕老师的图:可以看到caffe源码文件夹主要内容与功能: 核心概念: 2.经典模型:附图: 二、实验流程注:由于imagenet数据集过大,这里用自己的数据集完成经典model的训练与fine-tuning。本文在整体宏观指引上,具体实现细节参看后附的博客文章。原创 2017-03-06 15:24:56 · 4104 阅读 · 0 评论 -
linux下mnist验证caffe与结果可视化
此篇为了记录过程如题。linux下配置编译caffe网上资源很多。在make runtest和import caffe成功后进行本文的实验。下载数据: cd ~/caffe/ ./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh 修改配置: cd ~/caffe/ sudo gedit ./examples/mnis原创 2017-03-08 18:18:25 · 1757 阅读 · 0 评论 -
手把手教~Windows10+Anaconda2(64 bit)+VS2013+无GPU+Caffe配置与遇到的问题及解决
前言:在配置caffe之前曾有畏惧心理,听说坑很多,尝试了一遍还是蛮顺利的,一天不到就配置好了~~~(为了caffe还特意重装了系统 b( ̄▽ ̄)d ) 没几天完成了mnist实例,用自己的图片进行了测试。这个属于下一篇啦O(∩_∩)O。本文参考博文如下:风翼冰舟的博客http://blog.csdn.net/zb1165048017/article/details/51355143谢小小XH原创 2017-02-15 13:41:22 · 6095 阅读 · 1 评论 -
Caffe做分类初步学习以及常见问题
1.安装mac下安装caffe可以参考之前的一篇wiki(在mac下安装caffe),当然如果遇到其他问题请自行google。对于各种Linux系统,网上的教程已经非常多了。2.caffe代码与架构层次简单介绍caffe源码是Cpp语言的,基于一些外部的库,包括BLAS(矩阵计算),CUDA(GPU驱动),gflags,glog,boost,protobuf,hdf5,leveldb,lmdb等。只转载 2017-02-21 17:32:47 · 1166 阅读 · 0 评论 -
手把手教windows10+无Gpu+caffe下Mnist实例运行与测试自己的图片
前言:趁热打铁,完成了mnist实例的训练与测试,并用自己找的图片进行了测试。本文需要的环境及数据参照上篇博客配置 此例子所需数据集及所有需要修改生成的文件都放在云盘里,需要请自取 。链接:http://pan.baidu.com/s/1c16XXAS 密码:69c1训练模型数据集:程序本身不带测试数据,需要去下载,云盘里有。测试数据为leveldb格式。下载好后直接解压,得到两个文件夹(m原创 2017-02-15 15:53:05 · 3625 阅读 · 1 评论 -
TensorFlow下的MNIST关键原理与参数理解
前言:本来是配置好了caffe准备从MNIST上手的,结果半路杀出个TensorFlow,莫名被吸引,先来一篇记录啦~TensorFlow为什么吸引了我 TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域。 Tensor: 张量 flow: 流 顾名思义:(谷歌张量流图),所谓张量其实是N维数组,Flow(流)意味着基于数据流图的计算。原创 2017-02-09 23:25:02 · 2582 阅读 · 0 评论 -
BP原理与实现
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能。由这些人工神经元构建出来的网络,才能够具有学习、联想、记忆和模式识别的能力。BP网络就是一种简单的人工神经网络。 本文具体来介绍一下一种非常常见的神经网络模型——反向传播(Back Propagation)神经网络。概述BP(Back Propagation)神经网络是1986年由Rumelhart和Mc转载 2016-11-22 11:47:25 · 8866 阅读 · 0 评论