给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li 、宽度为 wi 。
如果存在 k 同时满足 k <= li 和 k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例如,矩形 [4,6] 可以切成边长最大为 4 的正方形。
设 maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。
请你统计有多少个矩形能够切出边长为 maxLen 的正方形,并返回矩形 数目 。
示例 1:
输入:rectangles = [[5,8],[3,9],[5,12],[16,5]]
输出:3
解释:能从每个矩形中切出的最大正方形边长分别是 [5,3,5,5] 。
最大正方形的边长为 5 ,可以由 3 个矩形切分得到。
示例 2:
输入:rectangles = [[2,3],[3,7],[4,3],[3,7]]
输出:3
提示:
1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 109
li != wi
CODE:
package com.study.cutsquarenum;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Solution {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
String str = sc.nextLine();
Pattern p = Pattern.compile("(\\d{1,},\\d{1,})");
Matcher m = p.matcher(str);
List<int[]> list = new ArrayList<int[]>();
while (m.find()) {
String mStr = m.group();
System.out.println(mStr);
String[] splitStr = mStr.split(",");
int[] arrInt = new int[2];
arrInt[0] = Integer.parseInt(splitStr[0]);
arrInt[1] = Integer.parseInt(splitStr[1]);
list.add(arrInt);
}
int[][] listArr = new int[list.size()][2];
list.toArray(listArr);
System.out.println(countGoodRectangles(listArr));
}
public static int countGoodRectangles(int[][] rectangles) {
int maxNum = 0;
int maxLen = 0;
for (int[] is : rectangles) {
int l = is[0];
int w = is[1];
int k = Math.min(l, w);
if (k == maxLen) {
maxNum++;
} else if (k > maxLen) {
maxNum = 1;
maxLen = k;
}
}
return maxNum;
}
}