数学函数及逻辑函数

向量化和广播

向量化和广播这两个概念是 numpy 内部实现的基础。有了向量化,编写代码时无需使用显式循环。这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替。向量化的应用使得代码更简洁,可读性更强,也可以说使用了向量化方法的代码看上去更“Pythonic”。

广播(Broadcasting)机制描述了 numpy 如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。并不是所有的维度都要彼此兼容才符合广播机制的要求,但它们必须满足一定的条件。

若两个数组的各维度兼容,也就是两个数组的每一维等长,或其中一个数组为 一维,那么广播机制就适用。如果这两个条件不满足,numpy就会抛出异常,说两个数组不兼容。

总结来说,广播的规则有三个:

  • 如果两个数组的维度数dim不相同,那么小维度数组的形状将会在左边补1。

【例】二维数组加一维数组

import numpy as np

x = np.arange(4)
y = np.ones((3, 4))
print(x.shape)  # (4,)
print(y.shape)  # (3, 4)

print((x + y).shape)  # (3, 4)
print(x + y)
# [[1. 2. 3. 4.]
#  [1. 2. 3. 4.]
#  [1. 2. 3. 4.]]

如果shape维度不匹配,但是有维度是1,那么可以扩展维度是1的维度匹配另一个数组;

【例】两个数组均需要广播

import numpy as np

x = np.arange(4).reshape(4, 1)
y = np.ones(5)

print(x.shape)  # (4, 1)
print(y.shape)  # (5,)

print((x + y).shape)  # (4, 5)
print(x + y)
# [[1. 1. 1. 1. 1.]
#  [2. 2. 2. 2. 2.]
#  [3. 3. 3. 3. 3.]
#  [4. 4. 4. 4. 4.]]

x = np.array([0.0, 10.0, 20.0, 30.0])
y = np.array([1.0, 2.0, 3.0])
z = x[:, np.newaxis] + y
print(z)
# [[ 1.  2.  3.]
#  [11. 12. 13.]
#  [21. 22. 23.]
#  [31. 32. 33.]]

如果shape维度不匹配,但是没有任何一个维度是1,则匹配引发错误;
【例】不匹配报错的例子

import numpy as np

x = np.arange(4)
y = np.ones(5)

print(x.shape)  # (4,)
print(y.shape)  # (5,)

print(x + y)
# ValueError: operands could not be broadcast together with shapes (4,) (5,) 

数学函数

算数运算

numpy.add

numpy.subtract

numpy.multiply

numpy.divide

numpy.floor_divide

numpy.power

在 numpy 中对以上函数进行了运算符的重载,且运算符为 元素级。也就是说,它们只用于位置相同的元素之间,所得到的运算结果组成一个新的数组。

一维数组的运算符计算
【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x + 1
print(y)
print(np.add(x, 1))  #数组进行加法运算
# [2 3 4 5 6 7 8 9]

y = x - 1
print(y)
print(np.subtract(x, 1))  #数组进行减法运算
# [0 1 2 3 4 5 6 7]

y = x * 2
print(y)
print(np.multiply(x, 2))   #数组进行乘法运算
# [ 2  4  6  8 10 12 14 16]

y = x / 2
print(y)
print(np.divide(x, 2)) #数组进行除法运算
# [0.5 1.  1.5 2.  2.5 3.  3.5 4. ]

y = x // 2
print(y)
print(np.floor_divide(x, 2))  #数组返回整数结果
# [0 1 1 2 2 3 3 4]

y = x ** 2
print(y)
print(np.power(x, 2))   #数组的平方运算
# [ 1  4  9 16 25 36 49 64]

二维数组的运算符计算。
【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = x + 1
print(y)
print(np.add(x, 1))
# [[12 13 14 15 16]
#  [17 18 19 20 21]
#  [22 23 24 25 26]
#  [27 28 29 30 31]
#  [32 33 34 35 36]]

y = x - 1
print(y)
print(np.subtract(x, 1))
# [[10 11 12 13 14]
#  [15 16 17 18 19]
#  [20 21 22 23 24]
#  [25 26 27 28 29]
#  [30 31 32 33 34]]

y = x * 2
print(y)
print(np.multiply(x, 2))
# [[22 24 26 28 30]
#  [32 34 36 38 40]
#  [42 44 46 48 50]
#  [52 54 56 58 60]
#  [62 64 66 68 70]]

y = x / 2
print(y)
print(np.divide(x, 2))
# [[ 5.5  6.   6.5  7.   7.5]
#  [ 8.   8.5  9.   9.5 10. ]
#  [10.5 11.  11.5 12.  12.5]
#  [13.  13.5 14.  14.5 15. ]
#  [15.5 16.  16.5 17.  17.5]]

y = x // 2
print(y)
print(np.floor_divide(x, 2))
# [[ 5  6  6  7  7]
#  [ 8  8  9  9 10]
#  [10 11 11 12 12]
#  [13 13 14 14 15]
#  [15 16 16 17 17]]

y = x ** 2
print(y)
print(np.power(x, 2))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]

数组间的运算符计算
【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

y = np.arange(1, 6)
print(y)
# [1 2 3 4 5]

z = x + y
print(z)
print(np.add(x, y))
# [[12 14 16 18 20]
#  [17 19 21 23 25]
#  [22 24 26 28 30]
#  [27 29 31 33 35]
#  [32 34 36 38 40]]

z = x - y
print(z)
print(np.subtract(x, y))
# [[10 10 10 10 10]
#  [15 15 15 15 15]
#  [20 20 20 20 20]
#  [25 25 25 25 25]
#  [30 30 30 30 30]]

z = x * y
print(z)
print(np.multiply(x, y))
# [[ 11  24  39  56  75]
#  [ 16  34  54  76 100]
#  [ 21  44  69  96 125]
#  [ 26  54  84 116 150]
#  [ 31  64  99 136 175]]

z = x / y
print(z)
print(np.divide(x, y))
# [[11.          6.          4.33333333  3.5         3.        ]
#  [16.          8.5         6.          4.75        4.        ]
#  [21.         11.          7.66666667  6.          5.        ]
#  [26.         13.5         9.33333333  7.25        6.        ]
#  [31.         16.         11.          8.5         7.        ]]

z = x // y
print(z)
print(np.floor_divide(x, y))
# [[11  6  4  3  3]
#  [16  8  6  4  4]
#  [21 11  7  6  5]
#  [26 13  9  7  6]
#  [31 16 11  8  7]]

z = x ** np.full([1, 5], 2)
print(z)
print(np.power(x, np.full([5, 5], 2)))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]

numpy.sqrt

numpy.square

  • numpy.sqrt(x, *args, **kwargs) Return the non-negative square-root of an array, element-wise.
  • numpy.square(x, *args, **kwargs) Return the element-wise square of the input.
    【例】
import numpy as np
x = np.arange(1, 5)
print(x)  # [1 2 3 4]
y = np.sqrt(x)  #开平方
print(y)
# [1.         1.41421356 1.73205081 2.        ]
print(np.power(x, 0.5))   #0.5次方
# [1.         1.41421356 1.73205081 2.        ]
y = np.square(x)  #平方
print(y)
# [ 1  4  9 16]
print(np.power(x, 2)) #power(x,n)x的n次方
# [ 1  4  9 16]

三角函数

numpy.sin

numpy.cos

numpy.tan

numpy.arcsin

numpy.arccos

numpy.arctan

通用函数(universal function)通常叫作ufunc,它对数组中的各个元素逐一进行操作。这表明,通用函数分别处理输入数组的每个元素,生成的结果组成一个新的输出数组。输出数组的大小跟输入数组相同。

三角函数等很多数学运算符合通用函数的定义,例如,计算平方根的sqrt()函数、用来取对数的log()函数和求正弦值的sin()函数。

【例】

import numpy as np

x = np.linspace(start=0, stop=np.pi / 2, num=10)
print(x)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.sin(x)
print(y)
# [0.         0.17364818 0.34202014 0.5        0.64278761 0.76604444
#  0.8660254  0.93969262 0.98480775 1.        ]

z = np.arcsin(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.cos(x)
print(y)
# [1.00000000e+00 9.84807753e-01 9.39692621e-01 8.66025404e-01
#  7.66044443e-01 6.42787610e-01 5.00000000e-01 3.42020143e-01
#  1.73648178e-01 6.12323400e-17]

z = np.arccos(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.tan(x)
print(y)
# [0.00000000e+00 1.76326981e-01 3.63970234e-01 5.77350269e-01
#  8.39099631e-01 1.19175359e+00 1.73205081e+00 2.74747742e+00
#  5.67128182e+00 1.63312394e+16]

z = np.arctan(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

指数和对数

numpy.exp

numpy.log

numpy.exp2

numpy.log2

numpy.log10

【例】The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm is logarithm in base e.

import numpy as np

x = np.arange(1, 5)
print(x)
# [1 2 3 4]
y = np.exp(x)
print(y)
# [ 2.71828183  7.3890561  20.08553692 54.59815003]
z = np.log(y)
print(z)
# [1. 2. 3. 4.]

加法函数、乘法函数

numpy.sum

通过不同的 axis,numpy 会沿着不同的方向进行操作:如果不设置,那么对所有的元素操作;如果axis=0,则沿着纵轴进行操作;axis=1,则沿着横轴进行操作。但这只是简单的二位数组,如果是多维的呢?可以总结为一句话:设axis=i,则 numpy 沿着第i个下标变化的方向进行操作。

聚合函数 是指对一组值(比如一个数组)进行操作,返回一个单一值作为结果的函数。因而,求数组所有元素之和的函数就是聚合函数。ndarray类实现了多个这样的函数。

【例】返回给定轴上的数组元素的总和。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.sum(x)
print(y)  # 575

y = np.sum(x, axis=0)
print(y)  # [105 110 115 120 125]

y = np.sum(x, axis=1)
print(y)  # [ 65  90 115 140 165]

numpy.cumsum

【例】cumsum()返回给定轴上的数组元素的累加和。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.cumsum(x)
print(y)
# [ 11  23  36  50  65  81  98 116 135 155 176 198 221 245 270 296 323 351
#  380 410 441 473 506 540 575]

y = np.cumsum(x, axis=0)
print(y)
# [[ 11  12  13  14  15]
#  [ 27  29  31  33  35]
#  [ 48  51  54  57  60]
#  [ 74  78  82  86  90]
#  [105 110 115 120 125]]

y = np.cumsum(x, axis=1)
print(y)
# [[ 11  23  36  50  65]
#  [ 16  33  51  70  90]
#  [ 21  43  66  90 115]
#  [ 26  53  81 110 140]
#  [ 31  63  96 130 165]]

numpy.prod 乘积

  • numpy.prod(a[, axis=None, dtype=None, out=None, …]) Return the product of array elements over a given axis.

【例】返回给定轴上数组元素的乘积。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.prod(x)
print(y)  # 788529152

y = np.prod(x, axis=0)
print(y)
# [2978976 3877632 4972968 6294624 7875000]

y = np.prod(x, axis=1)
print(y)
# [  360360  1860480  6375600 17100720 38955840]

numpy.cumprod 累乘

【例】返回给定轴上数组元素的累乘。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.cumprod(x)
print(y)
# [         11         132        1716       24024      360360     5765760
#     98017920  1764322560  -837609728   427674624   391232512    17180672
#    395155456   893796352   870072320  1147043840   905412608  -418250752
#    755630080  1194065920 -1638662144  -897581056   444596224 -2063597568
#    788529152]

y = np.cumprod(x, axis=0)
print(y)
# [[     11      12      13      14      15]
#  [    176     204     234     266     300]
#  [   3696    4488    5382    6384    7500]
#  [  96096  121176  150696  185136  225000]
#  [2978976 3877632 4972968 6294624 7875000]]

y = np.cumprod(x, axis=1)
print(y)
# [[      11      132     1716    24024   360360]
#  [      16      272     4896    93024  1860480]
#  [      21      462    10626   255024  6375600]
#  [      26      702    19656   570024 17100720]
#  [      31      992    32736  1113024 38955840]]

numpy.diff 差值

- a:输入矩阵
- n:可选,代表要执行几次差值
- axis:默认是最后一个

The first difference is given by out[i] = a[i+1] - a[i] along the given axis, higher differences are calculated by using diff recursively.
【例】沿着指定轴计算第N维的离散差值。

import numpy as np

A = np.arange(2, 14).reshape((3, 4))
A[1, 1] = 8
print(A)
# [[ 2  3  4  5]
#  [ 6  8  8  9]
#  [10 11 12 13]]
print(np.diff(A))
# [[1 1 1]
#  [2 0 1]
#  [1 1 1]]
print(np.diff(A, axis=0))
# [[4 5 4 4]
#  [4 3 4 4]]

四舍五入

numpy.around 舍入

【例】将数组舍入到给定的小数位数。

import numpy as np

x = np.random.rand(3, 3) * 10
print(x)
# [[6.59144457 3.78566113 8.15321227]
#  [1.68241475 3.78753332 7.68886328]
#  [2.84255822 9.58106727 7.86678037]]

y = np.around(x)
print(y)
# [[ 7.  4.  8.]
#  [ 2.  4.  8.]
#  [ 3. 10.  8.]]

y = np.around(x, decimals=2) #保留两位小数点
print(y)
# [[6.59 3.79 8.15]
#  [1.68 3.79 7.69]
#  [2.84 9.58 7.87]]

numpy.ceil 上限

numpy.floor 下限

  • numpy.ceil(x, *args, **kwargs) Return the ceiling of the input, element-wise.
  • numpy.floor(x, *args, **kwargs) Return the floor of the input, element-wise.

【例】

import numpy as np

x = np.random.rand(3, 3) * 10
print(x)
# [[0.67847795 1.33073923 4.53920122]
#  [7.55724676 5.88854047 2.65502046]
#  [8.67640444 8.80110812 5.97528726]]

y = np.ceil(x)
print(y)
# [[1. 2. 5.]
#  [8. 6. 3.]
#  [9. 9. 6.]]

y = np.floor(x)
print(y)
# [[0. 1. 4.]
#  [7. 5. 2.]
#  [8. 8. 5.]]

杂项

numpy.clip 裁剪

  • numpy.clip(a, a_min, a_max, out=None, **kwargs): Clip (limit) the values in an array.
  • 给定一个间隔,间隔之外的值将被剪裁到间隔边上。例如,如果指定了间隔“[0,1]”,则小于0的值将变为0,大于1的值将变为1。

【例】裁剪(限制)数组中的值。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.clip(x, a_min=20, a_max=30)
print(y)
# [[20 20 20 20 20]
#  [20 20 20 20 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [30 30 30 30 30]]

numpy.absolute 绝对值

numpy.abs

  • numpy.absolute(x, *args, **kwargs) 计算绝对值元素.
  • numpy.abs(x, *args, **kwargs) 是此函数的简写。
    【例】
import numpy as np

x = np.arange(-5, 5)
print(x)
# [-5 -4 -3 -2 -1  0  1  2  3  4]

y = np.abs(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]

y = np.absolute(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]

numpy.sign 返回数字符号的逐元素指示

【例】

x = np.arange(-5, 5)
print(x)
#[-5 -4 -3 -2 -1  0  1  2  3  4]
print(np.sign(x))
#[-1 -1 -1 -1 -1  0  1  1  1  1]

逻辑函数

真值测试

numpy.all

numpy.any

  • numpy.all(a, axis=None, out=None,
    keepdims=np._NoValue)`测试沿给定轴的所有数组元素是否计算为True.
  • numpy.any(a, axis=None, out=None, keepdims=np._NoValue)`
    测试沿给定轴的任何数组元素的计算结果是否为True。

【例】

import numpy as np

a = np.array([0, 4, 5])
b = np.copy(a)
print(np.all(a == b))  # True
print(np.any(a == b))  # True

b[0] = 1
print(np.all(a == b))  # False
print(np.any(a == b))  # True

print(np.all([1.0, np.nan]))  # True
print(np.any([1.0, np.nan]))  # True

a = np.eye(3)
print(np.all(a, axis=0))  # [False False False]
print(np.any(a, axis=0))  # [ True  True  True]

数组内容

numpy.isnan

  • numpy.isnan(x, *args, **kwargs) 测试元素是否为NaN,并将结果作为布尔数组返回。

【例】

a=np.array([1,2,np.nan])
print(np.isnan(a))
#[False False  True]


逻辑运算

numpy.logical_not

numpy.logical_and

numpy.logical_or

numpy.logical_xor

  • numpy.logical_not(x, *args, **kwargs)计算非x元素的真值.
  • numpy.logical_and(x1, x2, *args, **kwargs) 计算x1 AND x2元素的真值.
  • numpy.logical_or(x1, x2, *args, **kwargs)逐元素计算x1 OR x2的真值.
  • numpy.logical_xor(x1, x2, *args, **kwargs)计算x1 XOR x2的真值,按元素计算.
【例】计算非x元素的真值。

import numpy as np

print(np.logical_not(3))  
# False
print(np.logical_not([True, False, 0, 1]))
# [False  True  True False]

x = np.arange(5)
print(np.logical_not(x < 3))
# [False False False  True  True]

【例】计算x1 AND x2元素的真值。

print(np.logical_and(True, False))  
# False
print(np.logical_and([True, False], [True, False]))
# [ True False]
print(np.logical_and(x > 1, x < 4))
# [False False  True  True False]

【例】逐元素计算x1 OR x2的真值。


print(np.logical_or(True, False))
# True
print(np.logical_or([True, False], [False, False]))
# [ True False]
print(np.logical_or(x < 1, x > 3))
# [ True False False False  True]

【例】计算x1 XOR x2的真值,按元素计算。

print(np.logical_xor(True, False))
# True
print(np.logical_xor([True, True, False, False], [True, False, True, False]))
# [False  True  True False]
print(np.logical_xor(x < 1, x > 3))
# [ True False False False  True]
print(np.logical_xor(0, np.eye(2)))
# [[ True False]
#  [False  True]]

对照

numpy.greater

numpy.greater_equal

numpy.equal

numpy.not_equal

numpy.less

numpy.less_equal

  • numpy.greater(x1, x2, *args, **kwargs) 返回(x1>x2)元素的真值.
  • numpy.greater_equal(x1, x2, *args, **kwargs) 返回(x1>=x2)元素的真值.
  • numpy.equal(x1, x2, *args, **kwargs) 返回(x1==x2)元素元素的真值.
  • numpy.not_equal(x1, x2, *args, **kwargs) 返回(x1!=x2)元素的真值.
  • numpy.less(x1, x2, *args, **kwargs) 返回(x1<x2)元素的真值.
  • numpy.less_equal(x1, x2, *args, **kwargs) 返回(x1=<x2)元素的真值.

一维数组
【例】numpy对以上对照函数进行了运算符的重载。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = x > 2
print(y)
print(np.greater(x, 2))
# [False False  True  True  True  True  True  True]

y = x >= 2
print(y)
print(np.greater_equal(x, 2))
# [False  True  True  True  True  True  True  True]

y = x == 2
print(y)
print(np.equal(x, 2))
# [False  True False False False False False False]

y = x != 2
print(y)
print(np.not_equal(x, 2))
# [ True False  True  True  True  True  True  True]

y = x < 2
print(y)
print(np.less(x, 2))
# [ True False False False False False False False]

y = x <= 2
print(y)
print(np.less_equal(x, 2))
# [ True  True False False False False False False]

二维数组
【例】

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = x > 20
print(y)
print(np.greater(x, 20))
# [[False False False False False]
#  [False False False False False]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]

y = x >= 20
print(y)
print(np.greater_equal(x, 20))
# [[False False False False False]
#  [False False False False  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]

y = x == 20
print(y)
print(np.equal(x, 20))
# [[False False False False False]
#  [False False False False  True]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]]

y = x != 20
print(y)
print(np.not_equal(x, 20))
# [[ True  True  True  True  True]
#  [ True  True  True  True False]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]


y = x < 20
print(y)
print(np.less(x, 20))
# [[ True  True  True  True  True]
#  [ True  True  True  True False]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]]

y = x <= 20
print(y)
print(np.less_equal(x, 20))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]]

【例】

import numpy as np

np.random.seed(20200611)  #np.random.seed()函数中的参数可以选择任何一个数。它的功能是使设有相同参数的seed函数之后的随机数都相等
x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

y = np.random.randint(10, 40, [5, 5])
print(y)
# [[32 28 31 33 37]
#  [23 37 37 30 29]
#  [32 24 10 33 15]
#  [27 17 10 36 16]
#  [25 32 23 39 34]]

z = x > y
print(z)
print(np.greater(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False  True False  True]
#  [False  True  True False  True]
#  [ True False  True False  True]]

z = x >= y
print(z)
print(np.greater_equal(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False  True False  True]
#  [False  True  True False  True]
#  [ True  True  True False  True]]

z = x == y
print(z)
print(np.equal(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]
#  [False  True False False False]]

z = x != y
print(z)
print(np.not_equal(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True False  True  True  True]]

z = x < y
print(z)
print(np.less(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True False  True False]
#  [ True False False  True False]
#  [False False False  True False]]

z = x <= y
print(z)
print(np.less_equal(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True False  True False]
#  [ True False False  True False]
#  [False  True False  True False]]

【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

np.random.seed(20200611)
y = np.random.randint(10, 50, 5)

print(y)
# [32 37 30 24 10]

z = x > y
print(z)
print(np.greater(x, y))
# [[False False False False  True]
#  [False False False False  True]
#  [False False False False  True]
#  [False False False  True  True]
#  [False False  True  True  True]]

z = x >= y
print(z)
print(np.greater_equal(x, y))
# [[False False False False  True]
#  [False False False False  True]
#  [False False False  True  True]
#  [False False False  True  True]
#  [False False  True  True  True]]

z = x == y
print(z)
print(np.equal(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False False  True False]
#  [False False False False False]
#  [False False False False False]]

z = x != y
print(z)
print(np.not_equal(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True False  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]

z = x < y
print(z)
print(np.less(x, y))
# [[ True  True  True  True False]
#  [ True  True  True  True False]
#  [ True  True  True False False]
#  [ True  True  True False False]
#  [ True  True False False False]]

z = x <= y
print(z)
print(np.less_equal(x, y))
# [[ True  True  True  True False]
#  [ True  True  True  True False]
#  [ True  True  True  True False]
#  [ True  True  True False False]
#  [ True  True False False False]]

numpy.isclose

numpy.allclose

  • numpy.isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False) 返回一个布尔数组,其中两个数组在一个公差内元素上相等。
  • numpy.allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False) 如果两个数组在一个公差内元素相等,则返回True。
  • numpy.allclose() 等价于 numpy.all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))。公差值为正,通常是非常小的数字。将相对差(rtol*abs(b))和绝对差``atol`相加,以比较“a”和“b”之间的绝对差。

判断是否为True的计算依据:

np.absolute(a - b) <= (atol + rtol * absolute(b))

 - atol:float,绝对公差。
 - rtol:float,相对公差。
  • 如果nan位于同一位置并且“equal_nan=True”,则它们被视为相等。如果INF在同一个位置,符号相同,则视为相等

【例】比较两个数组是否可以认为相等。

import numpy as np

x = np.isclose([1e10, 1e-7], [1.00001e10, 1e-8])
print(x)  # [ True False]

x = np.allclose([1e10, 1e-7], [1.00001e10, 1e-8])
print(x)  # False

x = np.isclose([1e10, 1e-8], [1.00001e10, 1e-9])
print(x)  # [ True  True]

x = np.allclose([1e10, 1e-8], [1.00001e10, 1e-9])
print(x)  # True

x = np.isclose([1e10, 1e-8], [1.0001e10, 1e-9])
print(x)  # [False  True]

x = np.allclose([1e10, 1e-8], [1.0001e10, 1e-9])
print(x)  # False

x = np.isclose([1.0, np.nan], [1.0, np.nan])
print(x)  # [ True False]

x = np.allclose([1.0, np.nan], [1.0, np.nan])
print(x)  # False

x = np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
print(x)  # [ True  True]

x = np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
print(x)  # True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值