numpy 线性代数

这篇博客介绍了如何使用Numpy进行线性代数的计算,包括矩阵和向量积、矩阵特征值与特征向量、矩阵分解(奇异值分解、QR分解、Cholesky分解)、范数和行列式、矩阵的秩以及解方程和逆矩阵。通过多个示例详细解释了每个概念及其在Numpy中的实现。
摘要由CSDN通过智能技术生成

线性代数

Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarraymatrix 对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在程序中使用 matrix。在这里,我们仍然用 ndarray 来介绍。

矩阵和向量积

矩阵的定义、矩阵的加法、矩阵的数乘、矩阵的转置与二维数组完全一致,不再进行说明,但矩阵的乘法有不同的表示。

  • numpy.dot(a, b[, out])计算两个矩阵的乘积,如果是一维数组则是它们的内积。

【例1】

import numpy as np

x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])
z = np.dot(x, y)
print(z)  # 70

x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]])
print(x)
# [[1 2 3]
#  [3 4 5]
#  [6 7 8]]

y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]])
print(y)
# [[5 4 2]
#  [1 7 9]
#  [0 4 5]]

z = np.dot(x, y)
print(z)
# [[  7  30  35]
#  [ 19  60  67]
#  [ 37 105 115]]

z = np.dot(y, x)
print(z)
# [[ 29  40  51]
#  [ 76  93 110]
#  [ 42  51  60]]

注意:在线性代数里面讲的维数和数组的维数不同,如线代中提到的n维行向量在 Numpy 中是一维数组,而线性代数中的n维列向量在 Numpy 中是一个shape为(n, 1)的二维数组。


矩阵特征值与特征向量

  • numpy.linalg.eig(a) 计算方阵的特征值和特征向量。
  • numpy.linalg.eigvals(a) 计算方阵的特征值。

【例1】求方阵的特征值特征向量

import numpy as np

# 创建一个对角矩阵!
x = np.diag((1, 2, 3))  
print(x)
# [[1 0 0]
#  [0 2 0]
#  [0 0 3]]

print(np.linalg.eigvals(x))
# [1. 2. 3.]

a, b = np.linalg.eig(x)  
# 特征值保存在a中,特征向量保存在b中
print(a)
# [1. 2. 3.]
print(b)
# [[1. 0. 0.]
#  [0. 1. 0.]
#  [0. 0. 1.]]

# 检验特征值与特征向量是否正确
for i in range(3): 
    if np.allclose(a[i] * b[:, i], np.dot(x, b[:, i])):
        print('Right')
    else:
        print('Error')
# Right
# Right
# Right

【例2】判断对称阵是否为正定阵(特征值是否全部为正)。

import numpy as np

A = np.arange(16).reshape(4, 4)
print(A)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]
#  [12 13 14 15]]

A = A + A.T  # 将方阵转换成对称阵
print(A)
# [[ 0  5 10 15]
#  [ 5 10 15 20]
#  [10 15 20 25]
#  [15 20 25 30]]

B = np.linalg.eigvals(A)  # 求A的特征值
print(B)
# [ 6.74165739e+01 -7.41657387e+00  1.82694656e-15 -1.72637110e-15]

# 判断是不是所有的特征值都大于0,用到了all函数,显然对称阵A不是正定的
if np.all(B > 0):
    print('Yes')
else:
    print('No')
# No

矩阵分解

奇异值分解

有关奇异值分解的原理:奇异值分解(SVD)及其应用

  • u, s, v = numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)奇异值分解
    • a 是一个形如(M,N)矩阵
    • full_matrices的取值是为False或者True,默认值为True,这时u的大小为(M,M),v的大小为(N,N)。否则u的大小为(M,K),v的大小为(K,N) ,K=min(M,N)。
    • compute_uv的取值是为False或者True,默认值为True,表示计算u,s,v。为False的时候只计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值