机器学习中的数学--没看完呢

机器学习中的数学(1)——怎样形象的理解卷积
https://blog.csdn.net/liuweiyuxiang/article/details/77487988

机器学习中的数学(2)——矩阵中心化、标准化的意义和作用
https://blog.csdn.net/liuweiyuxiang/article/details/77559781

机器学习中的数学(3)——协方差矩阵和散布(散度)矩阵
https://blog.csdn.net/liuweiyuxiang/article/details/77566342

机器学习中的数学(4)——特征值与奇异值分解及其应用
https://blog.csdn.net/liuweiyuxiang/article/details/77574527

机器学习中的数学(5)——拉格朗日乘子法和KKT条件
https://blog.csdn.net/liuweiyuxiang/article/details/77685606

机器学习中的数学(6)——梯度下降法总结
https://blog.csdn.net/liuweiyuxiang/article/details/77717337

机器学习中的数学(7)——PCA的数学原理
https://blog.csdn.net/liuweiyuxiang/article/details/78853404

机器学习中的数学(8)——卡方检验原理及应用
https://blog.csdn.net/liuweiyuxiang/article/details/78165225

机器学习中的数学(9)——极大似然估计最通俗的讲解
https://blog.csdn.net/liuweiyuxiang/article/details/78557731

机器学习中数学(10)——先验概率,后验概率,似然函数和极大似然估计
https://blog.csdn.net/liuweiyuxiang/article/details/81142828

没找到11

机器学习中的数学(12)-全概率公式与贝叶斯公式
https://blog.csdn.net/liuweiyuxiang/article/details/89510241

老外写的一个教程:
[教程] - 机器学习中的数学(Mathematics for Machine Learning)
https://www.jianshu.com/p/c2afe684646f

已标记关键词 清除标记
相关推荐
介绍了机器中的数学知识,假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其中称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。 假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其中称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。 假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其中称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。 假设函数 是 上具有二阶连续偏导数的函数,考虑无约束优化问题: 表示目标函数的极小点。解无约束优化问题一般常用迭代算法,常用的迭代算法有梯度下降法,牛顿法和拟牛顿法。迭代公式为: 其中称为搜索方向,称为步长,为第k次迭代后x的值。不同的迭代算法的区别主要在搜索方向的确定上,而如何确定步长是另一个问题,这里不打算介绍。
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页