机器学习中的数学(中)

本文深入探讨机器学习中的概率论基础,包括概率空间、随机事件、条件概率与独立性、期望与马尔可夫不等式、方差与切比雪夫不等式,为理解机器学习的数学基础打下坚实基础。
摘要由CSDN通过智能技术生成

继上篇博文《机器学习中的数学(上)》,下面更新概率论中的问题:

3、概率问题

  这一部分,我们简要说明一些概率论的基本概念。

3.1 概率(Probability)

  概率空间是一个由三个部分组成的三元组:一个样本空间,一个事件集和一个概率分布。

  • 样本空间 Ω \Omega Ω:一次试验中所有基本事件或可能输出结果的集合。
  • 事件集 F \mathcal F F:样本空间中的一个子集。
  • 概率分布 P \mathbb P P是将所有事件 F \mathcal F F的集合映射到 [ 0 , 1 ] [0,1] [0,1],即 P [ Ω ] = 1 \mathbb P[\Omega]=1 P[Ω]=1 P [ ∅ ] = 0 \mathbb P[\emptyset]=0 P[]=0。对所有互斥事件 A 1 , ⋯   , A n A_1,\cdots,A_n A1,,An
    P [ A 1 ∪ ⋯ ∪ A n ] = ∑ i = 1 n P [ A i ] . \mathbb P[A_1\cup\cdots\cup A_n]=\sum_{i=1}^n\mathbb P[A_i]. P[A1An]=i=1nP[Ai].

3.2 随机事件(Random variables)

定义3.1:随机变量(Random variables) 随机变量 X X X是一个这样的函数:样本空间 Ω → R \Omega\rightarrow\mathbb R ΩR是可测量的,也就是对任何区间 I I I,样本空间 { ω ∈ Ω : X ( ω ) ∈ I } \{\omega\in\Omega:X(\omega)\in I\} { ωΩ:X(ω)I}的子集是一个事件。

  一个具体随机变量 X X X概率密度函数 定义为 x ↦ P [ X = x ] x\mapsto\mathbb P[X=x] xP[X=x]联合概率密度函数定义为两个变量 X , Y X,Y X,Y ( x , y ) ↦ P [ X = x ∧ Y = y ] (x,y)\mapsto\mathbb P[X=x\wedge{Y}=y] (x,y)P[X=xY=y]

  当一个概率分布允许有一个概率密度函数时,我们就说它是绝对连续的,也就是说对所有的 a , b ∈ R a,b\in{\mathbb R} a,bR与实值随机变量 X X X相关的函数 f f f满足

P [ a ≤ X ≤ b ] = ∫ a b f ( x ) d x . \mathbb P[a\le X\le b]=\int_{a}^{b}f(x)dx. P[aXb]=abf(x)dx.

定义3.2:二项分布(Binomial distribution) 如果对任意的 k ∈ { 0 , 1 , ⋯   , n } k\in\{0,1,\cdots,n\} k{ 0,1,,n},随机变量 X X X服从 n ∈ N n\in{\mathbb N} nN p ∈ [ 0 , 1 ] p\in[0,1] p[0,1]的二项分布 B ( n , p ) B(n,p) B(n,p),则有

P [ X = k ] = ( n k ) p k ( 1 − p ) n − k . \mathbb P[X=k]=\dbinom{n}{k}p^k(1-p)^{n-k}. P[X=k]=(kn)pk(1p)nk.

定义3.3:正态分布(Normal distribution) 如果随机变量 X X X满足如下方程,则 X X X服从 σ > 0 \sigma>0 σ>0 μ ∈ R \mu\in\mathbb R μR的正态(高斯)分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

f ( x ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) . f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp{\Big(-\frac{(x-\mu)^2}{2\sigma^2}\Big)}. f(x)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值