排序:
默认
按更新时间
按访问量

TensorFlow Lite Run on Android 并实时检测

前段时间弄了几个礼拜的安卓开发,前端后端开发都要弄,终于忙完了.现在继续接着上次的tensorflow on android尝试一下tensorflow lite,要不然心里一直惦记着呢.按照官网的说法,tensorflow lite是比tensorflow在移动和嵌入式设备上更轻量级解决方案,具...

2018-08-30 12:09:35

阅读数:313

评论数:0

Tensorflow object detection API 将自己的模型迁移到手机并实时检测

本节将上两节内容合并,讨论如何将自己训练的图表检测模型部署到手机并实现实时检测. 1,打开上次的android studio,将上上一节训练的图表检测模型的.pb文件放到本项目的assets目录下.命名任意(本例yjf.pb) 2,复制assets目录下的任意一个.txt文件为yjf.txt,...

2018-08-16 12:00:07

阅读数:234

评论数:0

Building TensorFlow on Android so Easy

TensorFlow模型如何在移动端运行成为一种趋势,加之MobileNet等轻量级网络的产生,加速了移动端APP嵌入目标检测模型的发展趋势.最近做了tensorflow 模型在按着手机上的移植,效果不错,所以大概记录一下过程.因此本节从环境搭建-编译安装tf开始,一步步开始将tf模型部署到安卓平...

2018-08-16 11:34:07

阅读数:119

评论数:0

Tensorflow Object Detection API 训练图表分类模型-ssd_mobilenet_v2(tfrecord数据准备+训练+测试)

结合上一章内容,本章节将结合实际需要,使用Tensorflow Object Detection API从头训练符合自己需求的图和表的检测分类模型. 需求说明:输入拍摄的文本页面图片,目标是训练一个可以正确检测图片上的图和表格并在图片画出其bounding box,之前用yolo也做过检测,不过...

2018-08-09 15:34:57

阅读数:753

评论数:11

Tensorflow Object Detection API 实例运行(本地训练测试宠物识别模型)

本章继续结合上一节内容,教大家如何在本地基于安装好的Tensorflow Object Detection API 训练,测试一个宠物识别模型实例. 以下内容均参照官网代码(官网宠物模型训练是在google could上训练的,为了节省实际,我们直接在本地训练,本次所有操作依然在linux下, ...

2018-08-08 17:40:02

阅读数:896

评论数:0

Tensorflow Object Detection API安装

本次安装环境为 ubuntu-16.04.4系统,使用环境python3,因为之前已经安装了gpu版本的tensorflow和opencv等,所以不在安装. 1,在主目录下载api, git  clone https://github.com/tensorflow/models.git(下载完后...

2018-08-08 15:45:08

阅读数:87

评论数:0

python读取摄像头或者视频文件,并在gui中实时显示

import tkinter as tk from tkinter.filedialog import askopenfilename, askdirectory from tkinter.messagebox import askquestion # from demo_neo import E...

2018-05-15 17:46:15

阅读数:3527

评论数:15

COCO API安装

git clone https://github.com/pdollar/coco.git cd coco/PythonAPI python3 setup.py build_ext --inplace python3 setup.py build_ext install 进入python3...

2018-03-15 10:09:30

阅读数:1798

评论数:0

基于python的两张图片RGBA alpha 透明度混合实现

最近在做关于基于yolo的目标检测,由于yolo目标检测中有时候会检测到不需要或者说和需要检测的目标不相匹配的其它额外小目标,因此在训练yolo模型的时候,有必要对训练数据进行数据增强操作,由程序对训练数据随机增加一些额外的小目标物体。如果只是把小目标图片直接叠加到原图中,则会出现周围像素不匹配等...

2018-01-25 17:07:04

阅读数:1148

评论数:0

零错误安装基于ubuntu14.04LTS的CUP版本深度学习框架Caffe

深度学习这么火,对于有幸从事机器学习的我而言激动不已,无奈caffe安装较为繁琐,加之硬件条件的限制,使得自己不得不对其望而却步。不过google的一款深度学习框架tensorflow安装较为简单,在Windows下之间pip install tensorflow即可完成安装,然后在eclipse...

2017-04-29 17:45:17

阅读数:384

评论数:0

基于R语言的支持向量机(SVM)+k均值(K-means)简单实现

SVM作为一种监督学习算法,主要任务是将线性不可分的样本通过一种非线性算法(如核函数)映射到高纬空间系统,使得样本集在高纬空间变得线性可分的机器学习算法。K-means作为非监督学习算法,能在对未知样本在无标签的情况下进行划分,对探索样本内部结果分布具有重要意义,本文将用R语言简单实现两种算法 ...

2015-12-09 14:40:11

阅读数:488

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭