Tensorflow Object Detection API 训练图表分类模型-ssd_mobilenet_v2(tfrecord数据准备+训练+测试)

本文介绍了如何使用Tensorflow Object Detection API,结合ssd_mobilenet_v2模型训练图表检测分类任务。从数据准备、tfrecord生成、配置文件设置、模型训练到tensorboard监控,详细阐述了整个流程。最终模型在测试图片上表现良好,为移动端部署打下基础。
摘要由CSDN通过智能技术生成

结合上一章内容,本章节将结合实际需要,使用Tensorflow Object Detection API从头训练符合自己需求的图和表的检测分类模型.

需求说明:输入拍摄的文本页面图片,目标是训练一个可以正确检测图片上的图和表格并在图片画出其bounding box,之前用yolo也做过检测,不过效果不太好,会出现检测不准确甚至漏检情况,于是这次想尝试api的检测效果,模型使用ssd_mobilenet_v2.

1,训练数据准备:

因为之前用yolo做过检测,所以训练数据都放在一个文件夹下,另外还有一个.txt文件,.txt文件包含了图片路径,图标的bounding box及对应的类别,如图:

每行分别代表图片路径 xmin ymin xmax ymax label(0代表graph, 1代表table),一张图片可能有多个图表,所以每一行图片可能有多个xmin ymin xmax ymax label.我分别有两个这样的.txt文件,一个是训练集,一个是测

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛希极限-cz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值