ID3算法

ID3算法是一种用于构建决策树的贪心算法,通过计算信息增益选择属性进行划分。该算法从根节点开始,递归地将样本集划分为单一类别的子集,直到所有子集仅包含同一类别或无属性可划分。ID3算法要求所有属性为离散量,且训练样本无缺失值。其优点包括算法简单、预测准确率较高,但存在偏向性、对特征相关性和噪声敏感等问题。
摘要由CSDN通过智能技术生成

一、简介

         ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。

    ID3 算法是一个从上到下、分而治之的归纳过程。

二、ID3算法的核心

         在决策树各级节点上选择属性是,通过计算信息增一来选择属性,以使得在每一个非节点进行测试时,能获得关于被测试记录最大的类别信息。

三、ID3算法的具体方法

       

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值