codeforces 977f div3 简单dp

F. Consecutive Subsequence
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an integer array of length nn.

You have to choose some subsequence of this array of maximum length such that this subsequence forms a increasing sequence of consecutive integers. In other words the required sequence should be equal to [x,x+1,,x+k1][x,x+1,…,x+k−1] for some value xx and length kk.

Subsequence of an array can be obtained by erasing some (possibly zero) elements from the array. You can erase any elements, not necessarily going successively. The remaining elements preserve their order. For example, for the array [5,3,1,2,4][5,3,1,2,4] the following arrays are subsequences: [3][3][5,3,1,2,4][5,3,1,2,4][5,1,4][5,1,4], but the array [1,3][1,3] is not.

Input

The first line of the input containing integer number nn (1n21051≤n≤2⋅105) — the length of the array. The second line of the input containing nn integer numbers a1,a2,,ana1,a2,…,an (1ai1091≤ai≤109) — the array itself.

Output

On the first line print kk — the maximum length of the subsequence of the given array that forms an increasing sequence of consecutive integers.

On the second line print the sequence of the indices of the any maximum length subsequence of the given array that forms an increasing sequence of consecutive integers.

Examples
input
Copy
7
3 3 4 7 5 6 8
output
Copy
4
2 3 5 6 
input
Copy
6
1 3 5 2 4 6
output
Copy
2
1 4 
input
Copy
4
10 9 8 7
output
Copy
1
1 
input
Copy
9
6 7 8 3 4 5 9 10 11
output
Copy
6
1 2 3 7 8 9 
Note

All valid answers for the first example (as sequences of indices):

  • [1,3,5,6][1,3,5,6]
  • [2,3,5,6][2,3,5,6]

All valid answers for the second example:

  • [1,4][1,4]
  • [2,5][2,5]
  • [3,6][3,6]

All valid answers for the third example:

  • [1][1]
  • [2][2]
  • [3][3]
  • [4][4]

All valid answers for the fourth example:

  • [1,2,3,7,8,9]



题意: 给你一个序列 ,你要求出最大的连续的 上升子序列,  并输出下标

思路:题其实很简单,,主要就是注意到连续的这一个特点,就可以在o(n) 的复杂度内 解决。dp[x]  表示以x 为结尾的子序列的最大长度,  那么dp[i]=max(dp[i-1]+1,dp[i]);    

代码: 

#include<bits/stdc++.h>
#define N 200005

using namespace std;

map<int ,int >mp;
int num[N];
int ans;
int n;

vector<int >ve;

int main()
{
	cin>>n;
	ans=-1;
	int in;
	for(int i=1;i<=n;i++)
	{
		cin>>num[i];
		mp[num[i]]=max(mp[num[i]],mp[num[i]-1]+1);
		if(mp[num[i]]>ans){
			ans=mp[num[i]];
			in=num[i];
		} 
	}
	
	cout<<ans<<endl;
	
	for(int i=n;i>=1;i--)
	{
		if(num[i]==in){
			ve.push_back(i); in--;
		}
	}
	int sz=ve.size();
	for(int i=sz-1;i>=0;i--) printf("%d ",ve[i]);
	
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值