[论文笔记]ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS

ALBERT是BERT的轻量化版本,通过参数精简技术如嵌入参数因式分解和跨层参数共享,降低模型大小,提升训练速度。文章介绍了ALBERT的核心思想,包括因式分解嵌入矩阵和跨层参数共享,以及增强模型性能的句子顺序预测损失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

本文是ALBERT1的论文笔记。

ALBERT(A Lite BERT)可以看成是BERT的精简版,现在像GPT-3这种模型大到无法忍受。

ALBERT提供了另一种思路,通过parameter-reduction(参数精简)技术降低内存消耗同时增加BERT的训练速度。

核心思想

作者设计了精简版(Lite)的BERT架构——ALBERT,和传统的BERT架构相比参数量有显著的减少。

ALBERT合并了两种精简参数的技术消除扩展预训练模型的主要障碍。

第一种是嵌入参数因式分解(factorized embedding parameterization)。通过分解大的词表嵌入矩阵为两个小的矩阵,作者将隐藏层的大小与词表嵌入(vocabluary embedding)的大小分离。这样可以很容易地增加隐藏层大小而不会显著地增加词表嵌入的参数大小。

第二种是跨层参数共享(cross-layer parameter sharing)。这种技术防止参数量随着网络深度的增加而增大。

这两种技术都显著地减少了BERT的参数量而不影响性能,从而提升了参数效率。ALBERT的配置类似BERT-large,但是参数量少了18倍,同时训练速度快了1.7倍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值