引言
本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。
💡系列文章完整目录: 👉点此👈
要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不适用外部框架的前提下,实现我们想要的模型。本系列文章的宗旨就是通过这样的过程,让大家切实掌握深度学习底层实现,而不是仅做一个调包侠。
基于之前的计算图代码,在实现类似torch.unbind时遇到了问题。因此,我们需要重写计算图的支撑代码,以支持这些运算。
存在的问题
在实现有单个输入产生多个输出的运算时,比如unbind或split。我们分别对多个输出后续进行不同的运算,在反向传播时,它们的梯度应该不同。
此时在反向传播时,应该传入一个梯度列表,每个元素代表由每个输出贡献的梯度。现有的代码只接收单个梯度,而不是列表。
重写Tensor#backward
def
本文旨在从零创建一个基于Python和NumPy的深度学习框架,类似PyTorch,实现自动求导。在现有计算图基础上,针对单输入多输出运算的问题,文章详细介绍了如何重写Tensor的backward方法、Function类以及Function子类,以支持多个输出的梯度计算,并优化内存利用。此外,提供了一个测试用例展示了反向传播的正确性。
订阅专栏 解锁全文
811

被折叠的 条评论
为什么被折叠?



