从零实现深度学习框架——重构计算图的实现

本文旨在从零创建一个基于Python和NumPy的深度学习框架,类似PyTorch,实现自动求导。在现有计算图基础上,针对单输入多输出运算的问题,文章详细介绍了如何重写Tensor的backward方法、Function类以及Function子类,以支持多个输出的梯度计算,并优化内存利用。此外,提供了一个测试用例展示了反向传播的正确性。

引言

本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。
💡系列文章完整目录: 👉点此👈
要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不适用外部框架的前提下,实现我们想要的模型。本系列文章的宗旨就是通过这样的过程,让大家切实掌握深度学习底层实现,而不是仅做一个调包侠。

基于之前的计算图代码,在实现类似torch.unbind时遇到了问题。因此,我们需要重写计算图的支撑代码,以支持这些运算。

存在的问题

在实现有单个输入产生多个输出的运算时,比如unbindsplit。我们分别对多个输出后续进行不同的运算,在反向传播时,它们的梯度应该不同。

此时在反向传播时,应该传入一个梯度列表,每个元素代表由每个输出贡献的梯度。现有的代码只接收单个梯度,而不是列表。

重写Tensor#backward

 def
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值