overfitting怎么解决

overfitting就是过拟合, 其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集, 对训练集外的数据却不work, 这称之为泛化(generalization)性能不好。泛化性能是训练的效果评价中的首要目标,没有良好的泛化,就等于南辕北辙, 一切都是无用功。
(https://img-blog.csdn.net/20180829084156660?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3lqd19Kb25l/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70)
实际训练中, 降低过拟合的办法一般如下:
正则化(Regularization)
L2正则化:目标函数中增加所有权重w参数的平方之和, 逼迫所有w尽可能趋向零但不为零. 因为过拟合的时候, 拟合函数需要顾忌每一个点, 最终形成的拟合函数波动很大, 在某些很小的区间里, 函数值的变化很剧烈, 也就是某些w非常大. 为此, L2正则化的加入就惩罚了权重变大的趋势.
L1正则化:目标函数中增加所有权重w参数的绝对值之和, 逼迫更多w为零(也就是变稀疏. L2因为其导数也趋0, 奔向零的速度不如L1给力了). 大家对稀疏规则化趋之若鹜的一个关键原因在于它能实现特征的自动选择。一般来说,xi的大部分元素(也就是特征)都是和最终的输出yi没有关系或者不提供任何信息的,在最小化目标函数的时候考虑xi这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的特征权重反而会被考虑,从而干扰了对正确yi的预测。稀疏规则化算子的引入就是为了完成特征自动选择的光荣使命,它会学习地去掉这些无用的特征,也就是把这些特征对应的权重置为0。
随机失活(dropout)
在训练的运行的时候,让神经元以超参数p的概率被激活(也就是1-p的概率被设置为0), 每个w因此随机参与, 使得任意w都不是不可或缺的, 效果类似于数量巨大的模型集成。
逐层归一化(batch normalization)
这个方法给每层的输出都做一次归一化(网络上相当于加了一个线性变换层), 使得下一层的输入接近高斯分布. 这个方法相当于下一层的w训练时避免了其输入以偏概全, 因而泛化效果非常好.
提前终止(early stopping)
理论上可能的局部极小值数量随参数的数量呈指数增长, 到达某个精确的最小值是不良泛化的一个来源. 实践表明, 追求细粒度极小值具有较高的泛化误差。
这是直观的,因为我们通常会希望我们的误差函数是平滑的, 精确的最小值处所见相应误差曲面具有高度不规则性, 而我们的泛化要求减少精确度去获得平滑最小值, 所以很多训练方法都提出了提前终止策略.
典型的方法是根据交叉叉验证提前终止: 若每次训练前, 将训练数据划分为若干份, 取一份为测试集, 其他为训练集, 每次训练完立即拿此次选中的测试集自测. 因为每份都有一次机会当测试集, 所以此方法称之为交叉验证. 交叉验证的错误率最小时可以认为泛化性能最好, 这时候训练错误率虽然还在继续下降, 但也得终止继续训练了.

### 回答1: 过拟合和欠拟合是机器学习中常见的问题。过拟合指模型在训练集上表现很好,但在测试集上表现较差,即模型过于复杂,过度拟合了训练数据,导致泛化能力不足。欠拟合则指模型在训练集和测试集上表现都较差,即模型过于简单,无法捕捉数据的复杂性和规律。为了解决这些问题,需要对模型进行调整和优化,以达到更好的泛化能力和预测准确性。 ### 回答2: 在机器学习中,过拟合(overfitting)和欠拟合(underfitting)是两个非常重要的概念。通俗地来说,过拟合指的是模型过于“敏感”地拟合数据,把噪声和偶然性也当作规律进行训练,导致在测试集上表现不佳;而欠拟合则表示模型过于简单,没能完全拟合训练集,导致在训练集和测试集(甚至未知的数据)上的预测效果都不理想。下面分别从原因、表现和如何解决这两个问题阐述。 一、原因 (1)过拟合 过拟合出现的原因一般是模型对训练数据过于敏感,太过注重细节,把数据中本应不具有泛化能力的噪声学进去了,导致模型在未知数据上效果大打折扣。具体来说,造成过拟合的因素有: · 训练集样本量不够:如果样本数据较少,模型可能抓不到数据的本质规律,从而把一些随机性当作了规律。 · 模型复杂度过高:如果模型过于复杂,将大量无用特征学进去,很可能导致过拟合问题。一些常见的复杂模型,如决策树、支持向量机、神经网络等。 · 迭代次数太多:若模型训练次数太多,就会导致模型过于关注训练数据,而失去对未知数据的泛化能力。 (2)欠拟合 欠拟合问题一般是因为模型不具备足够的学习能力,不能很好地拟合数据,导致预测效果不佳。从技术角度分析,造成欠拟合的原因有如下几个方面: · 训练集数据量不足:与过拟合相反,训练集数据量太少,可能会使模型难以理解数据中的规律,从而没能很好地学习到特征。 · 模型复杂度不够:如果模型比较简单,很可能没能很好地学习到训练集中的关系,导致欠拟合问题。 · 非线性问题过于简单:在处理非线性问题时,如果模型只是采用线性拟合的方法,就难以拟合训练集。 二、表现 (1)过拟合 过拟合的模型通常在训练集上表现突出,但在验证集及测试集上的表现较差,通常表现为: · 训练集误差和验证集误差之间差异明显,可能是训练误差低至0,但验证集误差依旧很高; · 模型表现过于复杂,对于Case的预测准确度很高,但对于未知数据的预测表现不佳; · 模型在训练数据中产生极大波动,对于训练集中微小的变化都作出反应; (2)欠拟合 欠拟合的模型表现比较显然,可能表现如下: · 训练误差和验证误差各自都很高; · 模型表现过于简单,无法从训练集中学到足够的规律; · 对于Case的预测准确度不高,且对于未知数据的预测表现不佳。 三、如何解决 (1)过拟合 在解决过拟合的问题时,有一些常见的方法,如下: · 交叉验证:通过重复采用数据集中的不同子集,来训练和测试模型,使模型变得更可靠,从而减少过拟合的风险。 · 增加数据量:如前文所述,训练数据集不足是导致过拟合的一个重要原因,因此增加数据量的方式是一种有效减少过拟合的手段。 · 简化模型:通过降低模型复杂度,如减少层数,删除某些特征等,避免把噪声当做规律进行训练,从而提高泛化能力。 (2)欠拟合 在解决欠拟合的问题时,通常采取以下方式: · 重新设计特征:特征工程是机器学习中非常重要的一环,通过重构特征,提高模型的表达能力,能够更好地利用数据的潜在规律。 · 增加数据量:在欠拟合情况下,通常是由于数据量不足导致的,增加数据量做法同过拟合的解决方案。 · 使用更加复杂的模型:如果模型过于简单,以至于无法发现数据的更复杂的规律,那么就需要重新考虑模型的构建,使用更加复杂的模型,如深度神经网络等。 ### 回答3: Overfitting(过拟合)是指模型过于复杂,试图完全匹配训练数据集,导致在新的数据上表现不佳。这种情况下,模型能够记住训练数据集中的每个细节,包括误差和噪声,从而无法推广到新数据。过拟合通常发生在模型太复杂或参数太多的情况下。 在机器学习中,我们使用各种技术来减少过拟合,例如交叉验证、正则化和减少特征数量。这些技术都有助于建立更好的模型并使其更能够适应新数据。 Underfitting(欠拟合)是指模型过于简单,无法很好地拟合训练数据集或新数据。这种情况下,模型的表现能力有限,无法捕获数据中的复杂关系。欠拟合通常发生在模型太简单或参数太少的情况下。 为了解决欠拟合问题,我们可以尝试增加模型的复杂度,增加特征数量或添加更多的隐层。这可以帮助模型更好地捕获数据中的复杂关系。但是,需要注意的是,过度增加模型的复杂度可能会导致过拟合。 因此,我们需要找到一个平衡点,使模型能够在训练数据集和新数据上都表现良好。这需要我们在训练过程中细心观察模型的表现,并使用适当的技术来解决过拟合或欠拟合问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值