大语言模型预训练篇-----数据准备篇(一)

 对于大语言模型来说,预训练阶段为最重要的一个阶段,通过在大规模的语料上进行训练,大语言模型获得通用语言理解能力与生成能力,掌握较为广泛的世界知识,且具有许多解决下游任务的关键能力。本节将介绍是如何准备预训练语料,包括数据收集、预处理、词元化,以及预训练过程中的数据调度方法。

一、数据来源

(一)通用文本数据

为了构建功能强大的大语言模型,需要从多元化的数据源中收集海量数据来进行训练。现有的大语言模型主要将各种公开的文本数据进行混合,作为预训练语料。下图展示了部分具有代表性的大语言模型的预训练数据来源。从图中可以看到,目前网页仍然是建立语言模型最广泛使用的预训练数据,其他常用的数据还包括书籍、代码、对话语料等

从图 中我们可以看到,绝大多数的大语言模型都选用了网页、书籍和对话文本等通用语料作为预训练数据。这些通用语料涵盖了多个主题类别的文本内容。
(二)专用文本数据
专用文本数据有助于提升大语言模型解决下游特定任务的能力,大致分为三类:多语文本、科学文本以及代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值