最短路(Dijkstra算法)模板题 洛谷P3371

题目

如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

输入格式

第一行包含三个整数 n,m,s分别表示点的个数、有向边的个数、出发点的编号。
接下来 m 行每行包含三个整数 u,v,w 表示一条 u→v 的,长度为 w 的边。

输出格式

**输出一行 n 个整数,第 i 个表示 s 到第 i 个点的最短路径,若不能到达则输出 2147483647 **

解题思路

裸的单源路径最短路问题,数据也不是非常大,可以不用堆优化就可以AC。这里存图选择了链式前向星,好像用领接表存图会tle。

#include<iostream>
using namespace std;

int head[20000];
struct bian{
	int to;
	int w;
	int next;
} a[1000000];
int n, m, s, cnt;
int vis[20000];
long long dis[20000];

void add(int u, int v, int w){
	a[cnt].to = v;
	a[cnt].w = w;
	a[cnt].next = head[u];
	head[u] = cnt++;
}

int main()
{
	scanf("%d%d%d", &n, &m, &s);
	for(int i=1;i<=n;i++) head[i] = -1;
	for(int i=1;i<=n;i++) dis[i]=2147483647;
	int u, v, w;
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d", &u, &v, &w);
		add(u, v, w);
	}
	int qidian = s;
	dis[s] = 0;
	while(!vis[qidian])
	{
		vis[qidian]=1;
		for(int i=head[qidian]; i!=-1 ; i=a[i].next)
		{
			if(!vis[a[i].to] && dis[a[i].to]>dis[qidian]+a[i].w)
			{
				dis[a[i].to] = dis[qidian]+a[i].w;
			}
		}
		long long minn=2147483647;
		for(int i=1;i<=n;i++)
		{
			if(!vis[i] && minn>dis[i])
			{
				qidian = i;
				minn = dis[i];
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		printf("%lld ", dis[i]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值