6.6模拟题 方案数

本文介绍了一种使用动态规划解决特定计数问题的方法。问题背景为:从N张分别标有1到N数字的牌中选出M张牌,使其总和等于S,求解所有可能的方案数量。通过定义状态转移方程并给出具体实现代码,文章详细展示了如何高效地求解此类问题。
摘要由CSDN通过智能技术生成

题目

   小志的数学总是不及格,小强的爸爸为鼓励他学习,跟他打了个赌:如果他能答对一个问题,就给他一个糖果。这个问题是,有N张有数字的牌,牌上的数字分别是1,…,N,问从中选出M张牌,总和刚好是S的方案数有多少。小志不会回答,但又很想得到糖果,因此请求你的帮助。你能帮他拿到糖果吗?

Input

   输入只有一行,包含三个整数,分别是总的牌数N,要选择的牌数M以及总和S。

Output

   输出只有一行,包含一个整数,为所求的方案数,数据保证答案小于2^31。

Sample Input

9 5 18

Sample Output

3

数据范围:
对于30%的数据,M ≤ N ≤ 10;
对于80%的数据,M ≤ N ≤ 50;
对于所有的数据,M ≤ N ≤ 150,S ≤ 12000。

题解

这是一道动态规划
设a[k,i,j]为选到第k张牌,选了i张,总和为j时得方案数
此时有选和不选两种情况
若选,则a[k,i,j]=a[k-1,i-1,j-k]
若不选,则a[k,i,j]=a[k-1,i,j]
所以a[k,i,j]=a[k-1,i-1,j-k]+a[k-1,i,j]
此时可以省略k

代码

var
  n,m,i,j,k,s,max:longint;
  a:array[0..150,0..12000]of int64;

begin
  readln(n,m,s);
  a[0,0]:=1;
  for k:=1 to n do
    begin
      max:=max+k; if max>s then max:=s;
      for i:=m downto 1 do
        for j:=max downto k do
          a[i,j]:=a[i-1,j-k]+a[i,j];
    end;
  writeln(a[m,s]);
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值