题目
小志的数学总是不及格,小强的爸爸为鼓励他学习,跟他打了个赌:如果他能答对一个问题,就给他一个糖果。这个问题是,有N张有数字的牌,牌上的数字分别是1,…,N,问从中选出M张牌,总和刚好是S的方案数有多少。小志不会回答,但又很想得到糖果,因此请求你的帮助。你能帮他拿到糖果吗?
Input
输入只有一行,包含三个整数,分别是总的牌数N,要选择的牌数M以及总和S。
Output
输出只有一行,包含一个整数,为所求的方案数,数据保证答案小于2^31。
Sample Input
9 5 18
Sample Output
3
数据范围:
对于30%的数据,M ≤ N ≤ 10;
对于80%的数据,M ≤ N ≤ 50;
对于所有的数据,M ≤ N ≤ 150,S ≤ 12000。
题解
这是一道动态规划
设a[k,i,j]为选到第k张牌,选了i张,总和为j时得方案数
此时有选和不选两种情况
若选,则a[k,i,j]=a[k-1,i-1,j-k]
若不选,则a[k,i,j]=a[k-1,i,j]
所以a[k,i,j]=a[k-1,i-1,j-k]+a[k-1,i,j]
此时可以省略k
代码
var
n,m,i,j,k,s,max:longint;
a:array[0..150,0..12000]of int64;
begin
readln(n,m,s);
a[0,0]:=1;
for k:=1 to n do
begin
max:=max+k; if max>s then max:=s;
for i:=m downto 1 do
for j:=max downto k do
a[i,j]:=a[i-1,j-k]+a[i,j];
end;
writeln(a[m,s]);
end.