题目
在一个神奇的小镇上有着一个特别的电车网络,它由一些路口和轨道组成,每个路口都连接着若干个轨道,每个轨道都通向一个路口(不排除有的观光轨道转一圈后返回路口的可能)。在每个路口,都有一个开关决定着出去的轨道,每个开关都有一个默认的状态,每辆电车行驶到路口之后,只能从开关所指向的轨道出去,如果电车司机想走另一个轨道,他就必须下车切换开关的状态。
为了行驶向目标地点,电车司机不得不经常下车来切换开关,于是,他们想请你写一个程序,计算一辆从路口A到路口B最少需要下车切换几次开关。
输出文件只有一个数字,表示从A
到B所需的最少的切换开关次数,
若无法从A前往B,输出-1。
3 2 1—————————————— 0
2 2 3
2 3 1
2 1 2
读入:第一行有3个整数2<=N<=100,1<=A,B<=N,分别表示路口的数量,和电车的起点,终点。
接下来有N行,每行的开头有一个数字Ki(0<=Ki<=N-1),表示这个路口与Ki条轨道相连,接下来有Ki个数字表示每条轨道所通向的路口,开关默认指向第一个数字表示的轨道。
题解
好水啊,神奇而赤裸裸的spfa
读入的时候随便把给出的轨道信息转化成边权就可以直接spfa了
时间复杂度O(n2)
代码
var
n,s,t,i,j,k,x,y:longint;
c,a,ne,ls,state,w,d:array[0..100000]of longint;
b:array[1..100]of boolean;
procedure spfa;
var
i,j,k,h,t:longint;
begin
fillchar(d,sizeof(d),$7f);
fillchar(b,sizeof(b),false);
h:=0;t:=1;state[t]:=s;d[s]:=0;b[s]:=true;
while h<t do
begin
inc(h);
k:=ls[state[h]];
while k>0 do
begin
if (d[c[k]]+w[k]<d[a[k]]) then
begin
d[a[k]]:=d[c[k]]+w[k];
if not b[a[k]] then
begin
inc(t);
state[t]:=a[k];
b[a[k]]:=true;
end;
end;
k:=ne[k];
end;
b[state[h]]:=false;
end;
end;
begin
readln(n,s,t);
for i:=1 to n do
begin
read(k);
for j:=1 to k do
begin
inc(x);
read(y);
if j>1 then w[x]:=1;
c[x]:=i;a[x]:=y;ne[x]:=ls[i];
ls[i]:=x;
end;
end;
spfa;
if d[t]<>d[0] then writeln(d[t]) else writeln(-1);
end.