9.23 树塔狂想曲 2744

题目

相信大家都在长训班学过树塔问题,题目很简单求最大化一个三角形数塔从上往下走的路径和。走的规则是:(i,j)号点只能走向(i+1,j)或者(i+1,j+1)。如下图是一个数塔,映射到该数塔上行走的规则为:从左上角的点开始,向下走或向右下走直到最底层结束。

1
3 8
2 5 0
1 4 3 8
1 4 2 5 0

路径最大和是1+8+5+4+4 = 22,1+8+5+3+5 = 22或者1+8+0+8+5 = 22。

小S觉得这个问题so easy。于是他提高了点难度,他每次ban掉一个点(即规定哪个点不能经过),然后询问你不走该点的最大路径和。
当然他上一个询问被ban掉的点过一个询问会恢复(即每次他在原图的基础上ban掉一个点,而不是永久化的修改)。

Sample Input

5 3
1
3 8
2 5 0
1 4 3 8
1 4 2 5 0
2 2
5 4
1 1

Sample Output

17
22
-1

Hint

【样例解释】

第一次是
1
3 X
2 5 0
1 4 3 8
1 4 2 5 0
1+3+5+4+4 = 17 或者 1+3+5+3+5=17
第二次:
1
3 8
2 5 0
1 4 3 8
1 4 2 X 0
1+8+5+4+4 = 22
第三次:你们都懂的!无法通行,-1!

【数据规模】

所有测试数据范围和特点如下:
对于所有数据,数塔中的数X的大小满足

这里写图片描述

题解

看题解写的,这种方法要学习。
f[i,j]表示从第一层走到第i行第j个点最大值,g[i,j]表示从最后一层走到第i行第j个点最大值,a[i,j]表示当前点的值。
对于每一个不能走的点,我们一定只能走同行的另一个点,所以要找到f[i,j]+g[i,j]-a[i,j]最大的点,若刚好是不能走的店,则输出次大的点。这些都应在预处理完成,使得每个询问的时间复杂度为O(1)

O(3n2+m)

代码

var
  n,m,i,j,x,y:longint;
  a,f,g:array[0..1001,0..1001]of longint;
  b:array[0..1001,1..3]of longint;

function max(a,b:longint):longint;
begin
  if a>b then exit(a) else exit(b);
end;

begin
  readln(n,m);
  for i:=1 to n do
    begin
      for j:=1 to i do
        read(a[i,j]);
      readln;
    end;
  for i:=1 to n do
    for j:=1 to i do
      f[i,j]:=max(f[i-1,j],f[i-1,j-1])+a[i,j];
  for i:=n downto 1 do
    for j:=1 to i do
      g[i,j]:=max(g[i+1,j],g[i+1,j+1])+a[i,j];
  for i:=1 to n do
    begin
      b[i,1]:=-1;b[i,2]:=-1;
      for j:=1 to i do
        if f[i,j]+g[i,j]-a[i,j]>b[i,1] then
          begin
            b[i,2]:=b[i,1];
            b[i,1]:=f[i,j]+g[i,j]-a[i,j];
            b[i,3]:=j;
          end else
        if f[i,j]+g[i,j]-a[i,j]>b[i,2] then
          b[i,2]:=f[i,j]+g[i,j]-a[i,j];
    end;
  for i:=1 to m do
    begin
      readln(x,y);
      if b[x,3]<>y then writeln(b[x,1]) else writeln(b[x,2]);
    end;
end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值