题目:
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
进阶:你能设计一个时间复杂度为 O(log (m+n))
的算法解决此问题吗?
难度:困难
力扣地址:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/
解题思路:
解法一:
首先我们题目的时候想到的就是两个数组合并起来,两个有序数组的合并也是归并排序中的一部分。然后根据奇数,还是偶数,返回中位数。
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m=nums1.length;
int n=nums2.length;
int[] nums=new int[m+n];
if(m==0){ //第一个数组为空,直接看第二个数组就行
if(n%2==0){ //偶数的话求中位数是中间两个数相加除以2.0,注意是2.0,这样才会强制转化为double类型
return (nums2[n/2-1]+nums2[n/2])/2.0;
}else{
return nums2[n/2];
}
}
if(n==0){ //同样第二个数组为空,直接看第一个数组就行
if(m%2==0){
return (nums1[m/2-1]+nums1[m/2])/2.0;
}else{
return nums1[m/2];
}
}
int count=0; //代表合并的数组下标
int i=0,j=0;
while(count!=(m+n)){
//如果第一个数组先遍历完了,那么直接把第二个数组赋值给nums
if(i==m){
while(j!=n){
nums[count++]=nums2[j++];
}
break;//注意别忘记添加break
}
//如果第二个数组先遍历完了,那么直接把第一个数组赋值给nums
if(j==n){
while(i!=m){
nums[count++]=nums1[i++];
}
break;
}
if(nums1[i]<nums2[j]){
nums[count++]=nums1[i++];
}else{
nums[count++]=nums2[j++];
}
}
if(count%2==0){
return (nums[count/2-1]+nums[count/2])/2.0;
}else{
return nums[count/2];
}
}
}
时间复杂度:遍历全部数组,O(m + n),这个时间和进阶要求的时间复杂度还是相差甚远!!
空间复杂度:开辟了一个数组,保存合并后的两个数组,O(m + n)
解法二:
想要时间复杂度是O(log(m+n)),那么必然需要使用到二分查找法,能力有限,不会哈哈哈哈,我就直接照搬评论区大佬答案,等我后面掌握之后再卷土重来。
- 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解。那么回顾一下中位数的定义,如果某个有序数组长度是奇数,那么其中位数就是最中间那个,如果是偶数,那么就是最中间两个数字的平均值。这里对于两个有序数组也是一样的,假设两个有序数组的长度分别为m和n,由于两个数组长度之和 m+n 的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。为了简化代码,不分情况讨论,我们使用一个小trick,我们分别找第 (m+n+1) / 2 个,和 (m+n+2) / 2 个,然后求其平均值即可,这对奇偶数均适用。加入 m+n 为奇数的话,那么其实 (m+n+1) / 2 和 (m+n+2) / 2 的值相等,相当于两个相同的数字相加再除以2,还是其本身。
- 这里我们需要定义一个函数来在两个有序数组中找到第K个元素,下面重点来看如何实现找到第K个元素。首先,为了避免产生新的数组从而增加时间复杂度,我们使用两个变量i和j分别来标记数组nums1和nums2的起始位置。
- 然后来处理一些边界问题,比如当某一个数组的起始位置大于等于其数组长度时,说明其所有数字均已经被淘汰了,相当于一个空数组了,那么实际上就变成了在另一个数组中找数字,直接就可以找出来了。还有就是如果K=1的话,那么我们只要比较nums1和nums2的起始位置i和j上的数字就可以了。
- 难点就在于一般的情况怎么处理?因为我们需要在两个有序数组中找到第K个元素,为了加快搜索的速度,我们要使用二分法,对K二分,意思是我们需要分别在nums1和nums2中查找第K/2个元素,注意这里由于两个数组的长度不定,所以有可能某个数组没有第K/2个数字,所以我们需要先检查一下,数组中到底存不存在第K/2个数字,如果存在就取出来,否则就赋值上一个整型最大值。如果某个数组没有第K/2个数字,那么我们就淘汰另一个数字的前K/2个数字即可。有没有可能两个数组都不存在第K/2个数字呢,这道题里是不可能的,因为我们的K不是任意给的,而是给的m+n的中间值,所以必定至少会有一个数组是存在第K/2个数字的。
- 最后就是二分法的核心啦,比较这两个数组的第K/2小的数字midVal1和midVal2的大小,如果第一个数组的第K/2个数字小的话,那么说明我们要找的数字肯定不在nums1中的前K/2个数字,所以我们可以将其淘汰,将nums1的起始位置向后移动K/2个,并且此时的K也自减去K/2,调用递归。反之,我们淘汰nums2中的前K/2个数字,并将nums2的起始位置向后移动K/2个,并且此时的K也自减去K/2,调用递归即可。
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int left = (m + n + 1) / 2;
int right = (m + n + 2) / 2;
return (findKth(nums1, 0, nums2, 0, left) + findKth(nums1, 0, nums2, 0, right)) / 2.0;
}
//i: nums1的起始位置 j: nums2的起始位置
public int findKth(int[] nums1, int i, int[] nums2, int j, int k){
if( i >= nums1.length) return nums2[j + k - 1];//nums1为空数组
if( j >= nums2.length) return nums1[i + k - 1];//nums2为空数组
if(k == 1){
return Math.min(nums1[i], nums2[j]);
}
int midVal1 = (i + k / 2 - 1 < nums1.length) ? nums1[i + k / 2 - 1] : Integer.MAX_VALUE;
int midVal2 = (j + k / 2 - 1 < nums2.length) ? nums2[j + k / 2 - 1] : Integer.MAX_VALUE;
if(midVal1 < midVal2){
return findKth(nums1, i + k / 2, nums2, j , k - k / 2);
}else{
return findKth(nums1, i, nums2, j + k / 2 , k - k / 2);
}
}
}