1. 题目来源
链接:1107. 魔板
相关:
2. 题目解析
双向广搜适用于 bfs
最小步数模型,尤其是在状态数量为指数级别时,可以使用双向广搜极大优化时间,是一个非常好的剪枝手段。
本题最多让搜 10 次,搜到了就返回最小步数,搜不到就返回无解即可。
如果是直接从起点开始搜,搜到终点截止,假设每次有 K
个新状态产生,那么最坏总的搜索状态会达到
K
10
K^{10}
K10,会 TLE 或者 MLE。
bfs
搜索时,像二叉树一样,每次会拓展指数级的新状态加入队列。
双向广搜优化:
- 如果采用双向广搜,从起点和终点同时向中间搜,那么最坏情况下是 2 K 5 2K^5 2K5。
- 因为在搜的过程中,我们可以用状态数量较少的一方进行拓展,最坏情况下就是在中间相遇,而不会指数级的扩展到最后一层去。
- 如果是扩展到最后一层,那也是由状态最少的一端进行扩展,时间复杂度更低!
- 需要判断两个方向的队列都不为空才要进行拓展,如果一个为空一个不为空的话,说明该方向没有下层元素,不可拓展,则另一个方向也是无法与其相连通,相会和的。
- 这里的字符串变换规则是双向的,如果 A–>B 成立,那么 B–>A 一定成立。
时间复杂度: O ( ( L ∗ N ) 5 ) O((L*N)^5) O((L∗N)5) 其中 L L L 为字符串长度, N N N 为替换规则个数
空间复杂度: O ( 2 ∗ ( L ∗ N ) 5 ) O(2*(L*N)^5) O(2∗(L∗N)5)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <unordered_map>
#include <string>
#include <queue>
using namespace std;
const int N = 6;
int n;
string a[N], b[N];
// 要加引用...
int extend(queue<string>& q, unordered_map<string, int>& da, unordered_map<string, int>& db, string a[], string b[]) {
auto t = q.front(); q.pop();
// 枚举扩展规则
for (int i = 0; i < t.size(); i ++ ) // 枚举每个起点
for (int j = 0; j < n; j ++ ) { // 与所有的规则对比,成立则组织成新状态
if (t.substr(i, a[j].size()) == a[j]) {
string state = t.substr(0, i) + b[j] + t.substr(i + a[j].size()); // 组织新状态
if (da.count(state)) continue; // 如果新状态已经自己这一端被扩展过了,则不更新
if (db.count(state)) return da[t] + 1 + db[state]; // 如果新状态被另一端扩展了,则说明找到了,返回最小操作步数
da[state] = da[t] + 1;
q.push(state);
}
}
return 1e9;
}
int bfs(string A, string B) {
queue<string> qa, qb;
unordered_map<string, int> da, db;
qa.push(A), qb.push(B);
da[A] = 0, db[B] = 0;
while (qa.size() && qb.size()) { // 队列有值,才说明可能连通。否则,一定不连通
int t;
if (qa.size() < qb.size()) t = extend(qa, da, db, a, b);
else t = extend(qb, db, da, b, a); // 从终点进行扩展,规则需要反转使用
if (t <= 10) return t;
}
return 1e9;
}
int main() {
string A, B;
cin >> A >> B;
while (cin >> a[n] >> b[n]) n ++ ;
int res = bfs(A, B);
if (res > 10) puts("NO ANSWER!");
else printf("%d\n", res);
return 0;
}