据统计,全国每年因窃电造成的损失都在200亿元左右;被查获的窃电案件不足总窃电案件的30%。而传统的用电检查及反偷查漏工作主要依靠突击检查的手段来打击窃电行为;存在先天性的缺陷和不足。
现有的电力计量自动化系统能够采集到各相电流、电压、功率因数等用电负荷数据以及用电异常等终端报警信息。异常告警信息和现场稽查来查找出窃漏电用户,并录入系统。若能通过这些数据信息提取出窃漏电用户的关键特征,构建窃漏电用户的识别模型,就能自动检查判断用户是否存在窃漏电行为。
我们使用2009年1月1日到2014年12月31日所有窃漏电用户和正常用户的用电量、告警及线损数据,以及该用户是否窃漏电的标志,共291条记录,数据详见“建模数据.csv”。其 中:
电量趋势下降指标:统计日期前后五天内,当天用电量低于前一天用电量的天数。
线损指标:统计日期后五天线损率的平均值和前五天线损率的平均值,若前者比后者的增长率超过了1%,则指标为1,否则为0。
告警类指标:与窃漏电相关的所有告警次数总和。
目标:构建窃漏电用户识别模型,能够应用窃漏电用户识别模型实现用户诊断。
具体要求:
1、 进行数据审核,查看数据基本情况,绘制各变量分布图;
2、 数据预处理阶段完成数据类型转换、异常值查找与处理、数据变换(将线损指标记录值内的1转换为“上升”,0转