2017-06-03 Hierarchical Image Saliency Detection on Extended CSSD

该论文提出了一种解决复杂性导致显著性检测错误的分层框架,通过多级结构分析显著性线索,并通过分层推断整合生成最终的显著性图。该模型首先使用watershed-like方法进行超分割生成三层,然后分别计算局部对比度和位置启发式以获取单一层次的显著性线索。通过局部一致性分层推理,结合多尺度信息,减少单尺度误差,优化显著性分配。最终采用信念传播进行优化,生成高精度显著性图。
摘要由CSDN通过智能技术生成

Lin Yao

The learning of " Hierarchical Image Saliency Detection on Extended CSSD" (J. Shi, Q. Yan, Li Xu, and J. Jia, IEEE Transactions on Pattern Analysis and Machine Intelligence, Apr. 2016, pp.717-729)

Background

When objects contain salient small-scale patterns, saliency could generally be misled by their complexity. Aiming to solve this notorious and universal problem, this paper proposes a hierarchical framework, to analyze saliency cues from multiple levels of structure, and then integrate them for the final saliency map through hierarchical inference.

Model

  1. Layer Generation
  1. To produce the three layers, we first generate an initial over segmentation by the watershed-like method.

Use the Gradient Magnitude as the Segmentation Function, The gradient is high at the borders of the objects and low (mostly) inside the objects. Segment the image to get initial map by using the watershed transform.

Grad=Ix2+Iy2

Where Ix indexes the gradient in the horizontal direction, and Iy indexes the gradient in the vertical direction.

  1.  
     

    In fact, a large pixel number does not necessarily correspond to a large-scale region in human perception. This model define a new encompassment scale measure based on shape uniformities and use it to obtain region sizes in the merging process.

scaleR=argmintRt×t|Rt×t⊆R

  1.  
     

    Compute Region Scale

minyDty|y∈Ri>0

Dt=M-kt⋆M , where kt indexes a mean filter of size t×t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值