Paper Learning
The learning of "Deep Saliency with Encoded Low level Distance Map and High Level Features" (2016, CVPR, pages 660-668)
1.1.1 Theories
1) The performance using deep learning to obtain high level features to detect salient regions outperform previous works that utilized only low level features.
2) High level features are good to evaluate objectness in an image, they are relatively weak in for determining precise localization. (Multiple levels of convolutional and polling layers “blur” the object boundaries, and it was still very hard to differentiate salient regions from their adjacent non-salient regions because their feature distances were not directly encoded.)
3) The hand-crafted features can provide complementary information to enhance pe