2017-03-27 Deep Saliency with Encoded Low level Distance Map and High Level Features (deep learning)

该论文介绍了如何利用深度学习获取的高级特征结合手工设计的低级特征来提高显著性检测的性能。通过VGG16模型的conv5 3层获取高级特征,使用SLIC算法生成的超像素和颜色、纹理、位置等低级特征计算ELD地图。这些特征被馈送到多层全连接神经网络分类器,以解决精确定位问题。然而,如何定义查询区域的方法在文中未提及。
摘要由CSDN通过智能技术生成

 Paper Learning

The learning of "Deep Saliency with Encoded Low level Distance Map and High Level Features" (2016, CVPR, pages 660-668)

1.1.1 Theories

1) The performance using deep learning to obtain high level features to detect salient regions outperform previous works that utilized only low level features.

  2) High level features are good to evaluate objectness in an image, they are relatively weak in for determining precise localization. (Multiple levels of convolutional and polling layers “blur” the object boundaries, and it was still very hard to differentiate salient regions from their adjacent non-salient regions because their feature distances were not directly encoded.)

  3) The hand-crafted features can provide complementary information to enhance pe

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值