[bzoj1009][HNOI2008]GT考试——动态规划+KMP+矩阵快速幂

题目大意:

阿申准备报名参加GT考试,准考证号为N位数X1X2…Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。他的不吉利数学A1A2…Am(0<=Ai<=9)有M位,不出现是指X1X2…Xn中没有恰好一段等于A1A2…Am. A1和X1可以为0。

思路:

显然可以构造这样一个dp,设dp[i][j]为到第i个且目前和不吉利串的最大匹配长度为j的方案数,设g[k][j]为在k个字符已经匹配的情况下添加一个字符使得匹配变为j个字符的方案数,于是可以得到状态转移方程:
d p [ i ] [ j ] = ∑ k = 0 m d p [ i − 1 ] [ k ] × g [ k ] [ j ] \\dp[i][j]=\sum_{k=0}^{m}dp[i-1][k]\times g[k][j] dp[i][j]=k=0mdp[i1][k]×g[k][j]
至于g数组可以直接利用KMP算法本身的特性来求解,这个转移每一次的形式是固定的,直接矩阵快速幂优化即可。

#include<bits/stdc++.h>

#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
typedef long long ll;

using namespace std;

void File(){
	freopen("bzoj1009.in","r",stdin);
	freopen("bzoj1009.out","w",stdout);
}

const int maxm=20+10;
int n,m,pat[maxm],nex[maxm];
ll mod,g[maxm][maxm],dp[maxm][maxm],ans;

void get_nex(){
	nex[1]=nex[2]=1;
	REP(i,2,m){
		int p=nex[i];
		while(p!=1 && pat[p]!=pat[i])p=nex[p];
		if(pat[p]==pat[i])nex[i+1]=p+1;
		else nex[i+1]=1;
	}
	REP(i,1,m+1)REP(x,0,9){
		int p=i;
		while(p!=1 && pat[p]!=x)p=nex[p];
		if(pat[p]!=x)--p;
		++g[i-1][p];
	}
}

struct Matrix{
	ll val[maxm][maxm];
	Matrix(){memset(val,0,sizeof(val));}
	Matrix operator * (const Matrix & tt) const {
		Matrix ret;
		REP(i,0,m-1)REP(j,0,m-1)REP(k,0,m-1)
			ret.val[i][j]=(ret.val[i][j]+val[i][k]*tt.val[k][j])%mod;
		return ret;
	}
};

Matrix qpow(Matrix x,int y){
	Matrix ret;
	REP(i,0,m-1)ret.val[i][i]=1;
	while(y){
		if(y&1)ret=ret*x;
		x=x*x;
		y>>=1;
	}
	return ret;
}

void work(){
	scanf("%d%d%lld",&n,&m,&mod);
	REP(i,1,m)scanf("%1d",&pat[i]);
	get_nex();
	Matrix ma,mb;
	REP(i,0,m-1)REP(j,0,m-1)ma.val[i][j]=g[i][j];
	REP(i,0,m-1)mb.val[i][i]=1;
	ma=qpow(ma,n);
	REP(i,0,m-1)ans=(ans+ma.val[0][i])%mod;
	printf("%lld\n",ans);
}

int main(){
	File();
	work();
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值