1.TensorFlow复数操作
操作 描述
tf.complex(real, imag, name=None) 将两实数转换为复数形式
# tensor ‘real’ is [2.25, 3.25]
# tensor imag is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
tf.complex_abs(x, name=None) 计算复数的绝对值,即长度。
# tensor ‘x’ is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]
tf.conj(input, name=None) 计算共轭复数
tf.imag(input, name=None)
tf.real(input, name=None) 提取复数的虚部和实部
tf.fft(input, name=None) 计算一维的离散傅里叶变换,输入数据类型为complex64
2.TensorFlow归约操作
操作 描述
tf.reduce_sum(input_tensor, reduction_indices=None,
keep_dims=False, name=None) 计算输入tensor元素的和,或者安照reduction_indices指定的轴进行求和
# ‘x’ is [[1, 1, 1]
# [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) &#