Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.
Leetcode出了新题,连续子数组最大乘积,跟连续子数组最大和有点类似。必定是O(n)的算法啊,超过这个时间复杂度的就不用考虑了。
整数相乘,除非正负号变了否则必定一直增加。所以可以记录下第一个负数的位置,如果后面连乘积是负数,那么计算从第一个负数之后开始的连乘积。还得注意0的情况,这时候第一个负数要重新算起。
class Solution {
public:
int maxProduct(int A[], int n) {
if (n == 0) {
return 0;
}
int max_product = A[0];
int products = A[0];
int min_products = A[0] < 0 ? A[0] : 1;
for (int i = 1; i < n; ++i) {
if (products == 0) {
products = 1;
min_products = 1;
}
products *= A[i];
if (products > max_product) {
max_product = products;
}
else if (products < 0) {
if (min_products == 1) {
min_products = products;
}
else {
max_product = max(max_product, products / min_products);
}
}
}
return max_product;
}
};
DP方式,简单易懂。
class Solution {
public:
int maxProduct(vector<int>& nums) {
if (nums.empty()) {
return 0;
}
int curMax = nums[0];
int curMin = nums[0];
int result = nums[0];
for (int i = 1; i < nums.size(); ++i) {
int tmp = curMax;
curMax = max(nums[i], max(curMax * nums[i], curMin * nums[i]));
curMin = min(nums[i], min(tmp * nums[i], curMin * nums[i]));
result = max(result, curMax);
}
return result;
}
};
本文介绍了一种求解连续子数组最大乘积问题的有效算法。该算法采用O(n)的时间复杂度,通过记录最大和最小乘积来解决正负数交替导致的问题,并提供了两种实现方式:一种使用传统循环结构,另一种采用动态规划方法。
288

被折叠的 条评论
为什么被折叠?



