Leetcode: Minimum Size Subarray Sum


Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

滑动窗口的思想,O(n)。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int sum = 0;
        int length = nums.size() + 1;
        for(int start = 0, cur = 0; cur < nums.size(); ++cur) {
            sum += nums[cur];
            if (sum >= s) {
                while (sum - nums[start] >= s) {
                    sum -= nums[start++];
                }
                length = min(length, cur - start + 1);
            }
        }
        
        if (length > nums.size()) {
            length = 0;
        }
        
        return length;
    }
};

O(nlogn)的话用分治法,这个比较复杂,很容易出错,各种边界条件。关键是求跨两边的那个最短子数组,先往左找到符合条件的,然后往右滑动。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        return minSubUtil(s, nums, 0, nums.size() -1);
    }
    
    int minSubUtil(int s, const vector<int>& nums, int start, int end) {
        if (start > end) {
            return 0;
        }
        else if (start == end) {
            return (nums[start] >= s ? 1: 0);
        }
        
        int mid = (start + end) / 2;
        int len1 = minSubUtil(s, nums, start, mid);
        int len2 = minSubUtil(s, nums, mid + 1, end);
        int minLength = min(len1, len2);
        if (len1 == 0 || len2 == 0) {
            minLength = max(len1, len2);
        }
        
        int len3 = 2;
        int sum = nums[mid] + nums[mid+1];
        int left = mid;
        while (sum < s && left > start) {
            sum += nums[--left];
            ++len3;
        }
        int right = mid + 1;
        while (sum < s && right < end) {
            sum += nums[++right];
            ++len3;
        }
        
        if (sum >= s) {
            if (minLength == 0) {
                minLength = len3;
            }
            else {
                minLength = min(minLength, len3);
            }
            while (left < mid) {
                sum -= nums[left++];
                --len3;
                while (sum < s && right < end) {
                    sum += nums[++right];
                    ++len3;
                }
                if (sum < s) {
                    break;
                }
                else {
                    minLength = min(minLength, len3);
                }
            }
        }
        
        return minLength;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值