//2019.05.08
一、概念(是什么)
1、知识 :有不同的解释,可以是“不变的真理”、“经验、背景、解释”、“交工的信息”
(1)分类
- 陈述性知识 -> 描述客观事物的性状和关系等静态信息
-> 事物
->概念:一类事物本质反映
->命题:对事物间关系的陈述
-->非概括性命题:表示特定事物之间的关系
-->概括性命题:描述概念之间的普遍关系
- 过程性知识 ->描述问题如何求解等动态信息
->规则描述事物的因果
->控制结构描述问题的求解步骤
(2)知识库
在对各种知识进行收集和整理的基础上,进行形式化表示, 按照一定方法存储,并提供相应的知识查询手段,从而使知 识有序化,是知识共享和应用的基础,知识的编码化和数字化就形成知识。(理解:就是将所谓的知识做一定的处理,处理成一个统一的格式保存起来,并提供查询)
2、知识图谱(Knowledge Graph)
目前,大量非结构化数据在互联网中传播存储,计算机不擅长处理;图是一种有效表示数据之间结构的表达形式,考虑将数据中蕴含的知识用图结构进行形式化的表示,并与结构化数据进行关联,构成知识图谱。
(知识图谱是google用来支持从语义角度组织网络数据,从而提供智能搜索服务的知识库)
=>知识图谱是一种比较通用的语义知识的形式化描述框架,用节点表示语义符号,用边表示符号之间的语义关系。
3、相关术语
(1)Ontology(本体/存在) vs. Knowledge Base vs. Database
Ontology:一套对客观世界进行描述的共享概念化体系, 对特定领域中概念(对象类型)及其相互关系进行形式化 表达。用来进行领域建模或者推理。因此,重点是对数据 的定义进行描述,而没有描述具体的实例数据
Knowledge Base:服从于ontology 控制的知识实例及其 载体
Database:计算机科学家为了用电脑表示和存储计算机应 用中所需要的数据所设计开发的产品
例如:Ontology是蛋糕的模具,Knowledge Base是蛋糕, Database是存放蛋糕的盒子(理解:Ontology是一个模板,KV是用这个模板做出的一个具体的东西,然后用DB来存储)
(2)Ontology vs. Taxonomy(分类)
两者都是树状结构(应该都是两个知识的模板),但Ontology是严格的IsA关系,可适用于知识推理,但无法表示概念的二义性
4、知识图谱中数据的表示形式
-->三元组形式(二元关系):这就相当于一个框架(Schema/元知识),对知识进行描述和定义
知识框架和实例数据构成了一个完整的知识系统,那么在约定的框架下,对数据进行结构化,并与已有的结构化数据进行关联,就形成知识图谱。
总结:知识是认知,图谱是载体,数据库是实现,知识图谱就是在数据库系统上利用图谱这种抽象载体表示知识这种认知内容。
狭义知识图谱:是一种知识描述语言,是语义网络的思想在语义网上的具体实施,使得互联 网知识元素以及知识元素之间的关系具有明确的语义和规范的描述,从而易于互联网知识资源的规模 化建设,并互相链接,促进知识资源的共享,从而 通过知识推理与知识计算赋能各种互联网服务
广