微信搜索关注「水滴与银弹」公众号,第一时间获取优质技术干货。7年资深后端研发,用简单的方式把技术讲清楚。
上一篇文章:Scrapy 源码剖析(三)Scrapy 有哪些核心组件?,我们已经分析了 Scrapy 核心组件的主要职责,以及它们在初始化时都完成了哪些工作。
这篇文章就让我们来看一下,也是 Scrapy 最核心的抓取流程是如何运行的,它是如何调度各个组件,完成整个抓取工作的。
运行入口
还是回到最初的入口,在Scrapy 源码剖析(二)Scrapy 是如何运行起来的?这篇文章中我们已经详细分析过了,在执行 Scrapy 命令时,主要经过以下几步:
- 调用
cmdline.py
的execute
方法 - 找到对应的
命令实例
解析命令行 - 构建
CrawlerProcess
实例,调用crawl
和start
方法开始抓取
而 crawl
方法最终是调用了 Cralwer
实例的 crawl
,这个方法最终把控制权交给了Engine
,而 start
方法注册好协程池,就开始异步调度执行了。
我们来看 Cralwer
的 crawl
方法:
@defer.inlineCallbacks
def crawl(self, *args, **kwargs):
assert not self.crawling, "Crawling already taking place"
self.crawling = True
try:
# 创建爬虫实例
self.spider = self._create_spider(*args, **kwargs)
# 创建引擎
self.engine = self._create_engine()
# 调用spider的start_requests 获取种子URL
start_requests = iter(self.spider.start_requests())
# 调用engine的open_spider 交由引擎调度
yield self.engine.open_spider(self.spider, start_requests)
yield defer.maybeDeferred(self.engine.start)
except Exception:
if six.PY2:
exc_info = sys.exc_info()
self.crawling = False
if self.engine is not None:
yield self.engine.close()
if six.PY2:
six.reraise(*exc_info)
raise
这里首先会创建出爬虫实例,然后创建引擎,之后调用了 spider
的 start_requests
方法,这个方法就是我们平时写的最多爬虫类的父类,它在 spiders/__init__.py
中定义:
def start_requests(self):
# 根据定义好的start_urls属性 生成种子URL对象
for url in self.start_urls:
yield self.make_requests_from_url(url)
def make_requests_from_url(self, url):
# 构建Request对象
return Request(url, dont_filter=True)
构建请求
通过上面这段代码,我们能看到,平时我们必须要定义的 start_urls
属性,原来就是在这里用来构建 Request
的,来看 Request
的定义:
class Request(object_ref):
def __init__(self, url, callback=None, method='GET', headers=None, body=None,
cookies=None, meta=None, encoding='utf-8', priority=0,
dont_filter=False, errback=None):
# 编码
self._encoding = encoding
# 请求方法
self.method = str(method).upper()
# 设置url
self._set_url(url)
# 设置body
self._set_body(body)
assert isinstance(priority, int), "Request priority not an integer: %r" % priority
# 优先级
self.priority = priority
assert callback or not errback, "Cannot use errback without a callback"
# 回调函数
self.callback = callback
# 异常回调函数
self.errback = errback
# cookies
self.cookies = cookies or {
}
# 构建Header
self.headers = Headers(headers or {
}, encoding=encoding)
# 是否需要过滤
self.dont_filter = dont_filter
# 附加信息
self._meta = dict(meta) if meta else None
Request
对象比较简单,就是封装了请求参数、请求方法、回调以及可附加的属性信息。
当然,你也可以在子类中重写 start_requests
和 make_requests_from_url
这 2 个方法,用来自定义逻辑构建种子请求。
引擎调度
再回到 crawl
方法,构建好种子请求对象后,调用了 engine
的 open_spider
:
@defer.inlineCallbacks
def open_spider(self, spider, start_requests=(), close_if_idle=True):
assert self.has_capacity(), "No free spider slot when opening %r" % \
spider.name
logger.info("Spider opened", extra={
'spider': spider})
# 注册_next_request调度方法 循环调度
nextcall = CallLaterOnce(self._next_request, spider)
# 初始化scheduler
scheduler = self.scheduler_cls.from_crawler(self.crawler)
# 调用爬虫中间件 处理种子请求
start_requests = yield self.scraper.spidermw.process_start_requests(start_requests, spider)
# 封装Slot对象
slot = Slot(start_requests, close_if_idle, nextcall, scheduler)
self.slot = slot
self.spider = spider
# 调用scheduler的open
yield scheduler.open(spider)
# 调用scrapyer的open
yield self.scraper.open_spider(spider)
# 调用stats的open
self.crawler.stats.open_spider(spider)
yield self.signals.send_catch_log_deferred(signals.spider_opened, spider=spider)
# 发起调度
slot.nextcall.schedule()
slot.heartbeat.start(5)
在这里首先构建了一个 CallLaterOnce
,之后把 _next_request
方法注册了进去,看此类的实现:
class CallLaterOnce(object):
# 在twisted的reactor中循环调度一个方法
def __init__(self, func, *a, **kw):
self._func = func
self._a = a
self._kw = kw
self._call = None
def schedule(self, delay=0):
# 上次发起调度 才可再次继续调度
if self._call is None:
# 注册self到callLater中
self._call = reactor.callLater(delay, self)
def cancel(self):
if self._call:
self._call.cancel()
def __call__(self):
# 上面注册的是self 所以会执行__call__
self._call = None
return self._func(*self._a, **self._kw)
这里封装了循环执行的方法类,并且注册的方法会在 twisted
的 reactor
中异步执行,以后执行只需调用 schedule
,就会注册 self
到 reactor
的 callLater
中,然后它会执行 __call__
方法,最终执行的就是我们注册的方法。
而这里我们注册的方法就是引擎的 _next_request
,也就是说,此方法会循环调度,直到程序退出。
之后调用了爬虫中间件的 process_start_requests
方法,你可以定义多个自己的爬虫中间件,每个类都重写此方法,爬虫在调度之前会分别调用你定义好的爬虫中间件,来处理初始化请求,你可以进行过滤、加工、筛选以及你想做的任何逻辑。
这样做的好处就是,把想做的逻辑拆分成多个中间件,每个中间件功能独立,而且维护起来更加清晰。
调度器
接下来就要开始调度任务了,这里首先调用了 Scheduler
的 open
:
def open(self, spider):
self.spider = spider
# 实例化优先级队列
self.mqs = self.pqclass(self._newmq)
# 如果定义了dqdir则实例化基于磁盘的队列
self.dqs = self._dq() if self.dqdir else None
# 调用请求指纹过滤器的open方法
return self.df.open()
def _dq(self):
# 实例化磁盘队列
activef = join(self.dqdir, 'active.json')
if exists(activef):
with open(activef) as f:
prios = json.load(f)
else:
prios = ()
q = self.pqclass(self._newdq, startprios=prios)
if q:
logger.info("Resuming crawl (%(queuesize)d requests scheduled)",
{
'queuesize': len(q)}, extra={
'spider': self.spider})
return q
在 open
方法中,调度器会实例化出优先级队列,以及根据 dqdir
是否配置,决定是否使用磁盘队列,最后调用了请求指纹过滤器的 open
方法,这个方法在父类 BaseDupeFilter
中定义:
class BaseDupeFilter(object):
# 过滤器基类,子类可重写以下方法
@classmethod
def from_settings(cls, settings):
return cls()
def request_seen(self, request):
# 请求过滤
return False
def open(self):
# 可重写 完成过滤器的初始化工作
pass
def close(self, reason