HDU-1848--博弈SG函数模板题

这篇文章写的很好,值得转发。



首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。


例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;


x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

以此类推.....

x 0 1 2 3 4 5 6 7 8....

sg[x] 0 1 0 1 2 3 2 0 1...

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

f[]需要从小到大排序

1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);

2.可选步数为任意步,SG(x) = x;

3.可选步数为一系列不连续的数,用GetSG()计算


上述是自jumping_frog博文的建立SG模板时的解释。


HDU 1848,有了上述方法,就简单了。 首先建立f数组,就是Fibonacci数列。 然后预处理求1000以内的SG数组,通过模板:

// 获得SG数组函数模板,t代表f数组的个数,n代表要求的sg数组上限
// f数组就是能取的个数(对于此题就是Fibonacci数列
// 有时,对于t已知就不需要单独传参
void get_sg(int t,int n)
{
    int i,j;
    memset(sg,0,sizeof(sg));
    for(i=1;i<=n;i++)
    {
        memset(mex,0,sizeof(mex));
        // 对于属于g(x)后继的数置1
        for( j=1 ;j<=t && fib[j]<=i ;j++ )
            mex[sg[i-fib[j]]]=1;
        // 找到最小不属于该集合的数
        for( j=0 ; j<=n ; j++ )
            if(!mex[j])
                break;
        sg[i] = j;
    }
}


SG的题,很多都可以看成是多个Nim博弈。 然后就可以分析奇异态,非奇异态来确定答案了。
然后就是此题完整代码:


下面这是我的AC代码(不是原作者的):


/************************************************
┆  ┏┓   ┏┓ ┆  
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓    ┏━┛ ┆
┆  ┃    ┃  ┆      
┆  ┃    ┗━━━┓ ┆
┆  ┃  AC代马   ┣┓┆
┆  ┃           ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆     
************************************************ */
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int fib[50], SG[1005], mex[1005];
int getSG(int n){
	int i, j;
	SG[0] = 0;
	for(i = 1; i <= n; ++i){
		memset(mex, 0, sizeof mex);
		for(j = 1; fib[j] <= i; ++j){
			mex[SG[i-fib[j]]] = 1;
		}
		for(j = 0; ; ++j){
			if(!mex[j]) break;
		}
		SG[i] = j;
	}
	return SG[n];
}
int main(){
	ios::sync_with_stdio(0);
	int n, m, p, i, j, mx;
	fib[1] = 1; fib[2] = 2;
	for(i = 2; fib[i] < 1000; ++i){
		fib[i+1] = fib[i] + fib[i-1];
	}
	while(cin >> n >> m >> p){
		if(n == 0 && m == 0 && p == 0) break;
		if(getSG(n)^getSG(m)^getSG(p)) cout << "Fibo" << endl;
		else cout << "Nacci" << endl;
	}
	return 0;
}

原文:  http://www.2cto.com/kf/201405/297489.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值