ACWing 893. 集合-Nim游戏​​​​​​​ (SG函数模板题)

ACWing 893. 集合-Nim游戏

 容斥原理和博弈论视频课

给定n堆石子以及一个由k个不同正整数构成的数字集合S。

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合S,最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式

第一行包含整数k,表示数字集合S中数字的个数。

第二行包含k个整数,其中第ii个整数表示数字集合S中的第i个数si。

第三行包含整数n。

第四行包含n个整数,其中第ii个整数表示第ii堆石子的数量hi。

输出格式

如果先手方必胜,则输出“Yes”。

否则,输出“No”。

数据范围

1≤n, k≤100
1≤si, hi≤10000 

输入样例:

2
2 5
3
2 4 7

输出样例:

Yes

 

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=110,M=10010;
int n,m;
int s[N],f[M];
int sg(int x){//这是一棵搜索树 
	if(f[x]!=-1)return f[x];//记忆化搜索 保证时间复杂度不是指数级别 每个状态只算一次 记忆化搜索是对搜索的一种优化,也是动态规划的一种实现方式
	unordered_set<int>S;//所有可以到的局面 
	for(int i=0;i<m;++i){
		int sum=s[i]; //当前的数的个数是s[i] 
		if(x>=sum) S.insert(sg(x-sum)); //当前的数的个数大于sum 才能把它加进来 从x中取走sum个石子
	}
	for(int i=0;;++i){//不属于当前集合的最小自然数 MEX 
		if(!S.count(i)) return f[x]=i;
	}
}

int main(){
	cin>>m;
	for(int i=0;i<m;++i)cin>>s[i];
	cin>>n;
	memset(f,-1,sizeof(f));
	int res=0;
	for(int i=0;i<n;++i){
		int x;
		cin>>x;
		res^=sg(x);
	}
	if(res)puts("Yes");
	else puts("No");
}

 

学习笔记(先贴图,有空再整理):

笔记1

关于尼姆和SG的类比我还不是很能感性地接受,要不断加深理解。SG函数的第一个题,还要多刷题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值