给定n堆石子以及一个由k个不同正整数构成的数字集合S。
现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合S,最后无法进行操作的人视为失败。
问如果两人都采用最优策略,先手是否必胜。
输入格式
第一行包含整数k,表示数字集合S中数字的个数。
第二行包含k个整数,其中第ii个整数表示数字集合S中的第i个数si。
第三行包含整数n。
第四行包含n个整数,其中第ii个整数表示第ii堆石子的数量hi。
输出格式
如果先手方必胜,则输出“Yes”。
否则,输出“No”。
数据范围
1≤n, k≤100
1≤si, hi≤10000
输入样例:
2
2 5
3
2 4 7
输出样例:
Yes
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=110,M=10010;
int n,m;
int s[N],f[M];
int sg(int x){//这是一棵搜索树
if(f[x]!=-1)return f[x];//记忆化搜索 保证时间复杂度不是指数级别 每个状态只算一次 记忆化搜索是对搜索的一种优化,也是动态规划的一种实现方式
unordered_set<int>S;//所有可以到的局面
for(int i=0;i<m;++i){
int sum=s[i]; //当前的数的个数是s[i]
if(x>=sum) S.insert(sg(x-sum)); //当前的数的个数大于sum 才能把它加进来 从x中取走sum个石子
}
for(int i=0;;++i){//不属于当前集合的最小自然数 MEX
if(!S.count(i)) return f[x]=i;
}
}
int main(){
cin>>m;
for(int i=0;i<m;++i)cin>>s[i];
cin>>n;
memset(f,-1,sizeof(f));
int res=0;
for(int i=0;i<n;++i){
int x;
cin>>x;
res^=sg(x);
}
if(res)puts("Yes");
else puts("No");
}
学习笔记(先贴图,有空再整理):
关于尼姆和SG的类比我还不是很能感性地接受,要不断加深理解。SG函数的第一个题,还要多刷题。