题意:
有k队士兵,每队都有相应的人数,要求将他们安排到n排座位上,每排有8个位置,其中(1, 2)(3, 4)(4, 5)(5, 6)(7, 8)看作是相邻位置,问是否能够安排所有人,使得不同队伍之间的人位置不相邻。
思路:
因为座位(3,4,5,6)比较特殊,我们先对它进行安排。首先在每个队伍里选择若干个4个相同队伍的人,将这些若干个4个相同队伍的人安排在(3,4,5,6)的位置,如果能够安排完所有4个相同队伍的人,由于肯定不会再有把(3,4,5,6)坐满的情况,那么将剩余的若干个(3,4,5,6)拆成若干个2个相邻座位和若干个1个座位,并加上由(1,2),(7,8)构成的若干个2个相邻座位的个数。如果不能安排完所有4个相同队伍的人,则需要从余下的(1,2),(7,8)去补充,并计算余下的所有2个相邻座位的个数,且此时1个座位的个数为0。
之后再进行统计每个队伍减去若干个4人之后余下的人数,将他们分为若干个2个人和1个人,再根据之前统计的2个相邻座位的个数去减这若干个2个人,1个座位的个数去减这若干个1个人。
最后再进行一次判断,如果都大于等于0则YES,都小于0则NO。
如果2个相邻座位剩余的个数大于0,则只能把这2个相邻的座位看成一个去补充1个座位,如果能补充得了则YES,否则NO。
如果1个座位剩余的个数大于0,则只能把若干个1个座位两个看成一个去补充2个相邻座位,如果能补充得了则YES,否则NO。
再否则则NO。
代码:
#include <bits/stdc++.h>
using namespace std;
int a[10005];
int main()
{
int n, k, ans, sum1, x, y;
scanf("%d %d", &n, &k);
sum1 = 0;
for(int i = 1; i <= k; ++i)
{
scanf("%d", &a[i]);
sum1 += a[i]/4;
}
if(sum1 <= n)
{
x = n-sum1+n*2;
y = n-sum1;
for(int i = 1; i <= k; ++i)
{
a[i] %= 4;
x -= a[i]/2;
y -= a[i]%2;
}
}
else
{
x = 2*n-(sum1-n)*2;
y = 0;
for(int i = 1; i <= k; ++i)
{
a[i] %= 4;
x -= a[i]/2;
y -= a[i]%2;
}
}
if(x >= 0 && y >= 0) puts("YES");
else if(x < 0 && y < 0) puts("NO");
else if(y >= 0 && x*2+y >= 0) puts("YES");
else if(x >= 0 && x+y >= 0) puts("YES");
else puts("NO");
return 0;
}
继续加油~