对于一般的图,最大团问题是一个NP-难的问题。然而,对于一些特殊的图,最大团问题可以有比较有效的解决方案。
关于最大团问题的概念,请百度之。^_^
在一个正整数集合A上定义可除图。 A = {a1, a2, ..., an} ,图上的顶点就是集合A中的数字。两个数字 ai 和 aj (i ≠ j) 之间有一条边的条件是 ai 能够被 aj 整除,或者 aj 能够被 ai 整除.
现在给定一个正整数集A,请找出这个集合所确定的可除图的最大团。
样例解释:在这个例子中,最大团是3,可以选择 {3,6,18}。
单组测试数据。 第一行有一个整数n (1≤n≤10^6),表示A的大小。 第二行有n个不一样的整数 a1,a2,...,an (1≤ai≤10^6),表示A中的元素。
输出一个整数,表示最大团中的点数。
样例输入1 8 3 4 6 8 10 18 21 24
样例输出1 3
思路:
太坑了...dp[i]表示以i为最大团中数值最小的点。所以利用可除图的性质枚举i的倍数j,dp[i] = max(dp[i], dp[j]+1).
本题数据过多得用输入挂,可是神坑点<stdio.h>里面和<cstdio>里的机制真的不一样啊!前者自带读入挂效果??可是网上找不到两者的区别= =,网上所有博文都说cstdio是从stdio.h继承过来的,但是在这题唉...可能c++和java一样实现了过多封装而导致的吧。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
template <class T>
inline void scan_d(T &ret)
{
char c;
ret = 0;
while ((c = getchar()) < '0' || c > '9') ;
while (c >= '0' && c <= '9')
{
ret = ret * 10 + (c - '0'), c = getchar();
}
}
int a[maxn];
int dp[maxn];
int main()
{
int n, x, y, ans = 0;
scan_d(n);
for(int i = 1; i <= n; ++i)
scan_d(a[i]);
sort(a+1, a+n+1);
for(int i = n; i >= 1; --i)
{
dp[a[i]] = 1;
for(int j = (a[i]<<1); j <= a[n]; j+=a[i])
dp[a[i]] = max(dp[a[i]], dp[j]+1);
}
printf("%d\n", *max_element(dp, dp+a[n]+1));
return 0;
}
STL函数:
max_element(.begin(), .end());
min_element(.begin(), .end());
寻找区间内最大最小值,复杂度仍然是线性,少写点而已。
继续加油~