计蒜客-2017 ACM-ICPC 亚洲区(西安赛区)网络赛Trig Function(数学公式推理)

本文介绍了一种利用切比雪夫多项式求解函数f(cos(x))=cos(nx)中x^m系数的方法,并给出了具体的实现思路与代码。通过对cos(nx)的表达式进行转换并结合切比雪夫多项式的性质,可以高效地计算出所求系数。
摘要由CSDN通过智能技术生成

题意:

对于所有x满足式子f(cos(x)) = cos(n*x);让我们求x关于函数f(x)的展开式x^m的系数,答案对998244353取模。

思路:

根据cos(n*x)式子我们可以化为若干个t*cos^k(x)的组合。例如n=2时,cos(2x) = -1+2cos^2(x)。

然后根据切比雪夫多项式,即论文中论述的。

可得到通项:

然后可根据其推理过程,简化求解方式:



所以综上,当n<k或者n和k的奇偶性不同时,我们直接特判为0。再发现m等于0的时候需要特殊处理一下,因为此时下面(n-k)!!的位数是比上面(n+k-2)!!的位数要多的,所以此时,我们要把多出来的这一点处理出来,在之后去求逆元。其它情况下面去抵消上面的若干位再求就行。(其实不特殊处理直接会导致过不了样例,但你能AC掉这题,数据太水= =)

代码:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod = 998244353;
int n, m;
ll a, b;
ll qpow(ll bas, ll n)
{
	ll ans = 1;
	while(n)
	{
		if(n&1) ans = ans*bas%mod;
		bas = bas*bas%mod;
		n >>= 1;
	}
	return ans;
}
int main()
{
	while(~scanf("%d %d", &n, &m))
	{
		if(((n^m)&1) || n < m)
		{
			puts("0");
			continue;
		}
		int key = (n-m)/2%2? -1: 1;
		a = 1, b = 1;
		for(int i = 1; i <= m; ++i)
		b = b*i%mod;

		if(m == 0) b = b*n%mod;
		else
		{
			for(int i = n-m+2; i <= n+m-2; i+=2)
			a = a*i%mod;
		}

		ll ans = a*qpow(b, mod-2)%mod*n%mod*key;
		printf("%lld\n", (ans+mod)%mod);
	}
	return 0;
}


继续加油~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值