题目链接:https://leetcode.com/problems/happy-number/description/
Write an algorithm to determine if a number is "happy".
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
Example: 19 is a happy number
- 12 + 92 = 82
- 82 + 22 = 68
- 62 + 82 = 100
- 12 + 02 + 02 = 1
Credits:
Special thanks to @mithmatt and @ts for adding this problem and creating all test cases.
由一个整数开始,之后由整数每一位数字的平方和的总和代替这个数,然后重复这个过程,直到最后是1为止,或者这个循环是一个没有包含1的死循环。这些过程中最终结果是1的这些数被称为快乐数。
分析:
就是让你验证一个数是否为欢乐数。
这里用到了一个名为龟兔赛跑的判断链表是否存在环的算法,不同于拓扑排序判断有向图是否存在环,也不同于floyd求最小环算法。其空间复杂度为O(1),时间复杂度O(n)[我感觉不止...]。对于一种链表,每个节点只有一个后继,但到达它的前驱可能不止一个,该算法便是利用了只有一个后继的特点去进行求环。该算法能够确定从某点开始到达环中的第一个节点,以及该环的长度。所以多用来寻找循环节,循环节不恰好就是上述链表的特性嘛。
具体思想见:http://blog.csdn.net/u012534831/article/details/74231581。
下面贴下自己写的模板代码:
int nex[maxn]; //存储后继
void work(int S)
{
int k1 = S, k2 = S;
do
{
k1 = nex[k1];
k2 = nex[k2];
//if(k2 == -1) return 0; //如果有链尾,此处可判断无环
k2 = nex[k2];
//if(k2 == -1) return 0;
}
while(k1 != k2);
//将一个指针移到起点,求出非环部分长度和环的起点
int cnt1 = 0;
k1 = S;
do
{
k1 = nex[k1];
k2 = nex[k2];
++cnt1;
}
while(k1 != k2);
int start = k1; //求出从S到环中的第一个点
int cnt2 = 0; //求环部分长度
do
{
++cnt2;
k1 = nex[k1];
}
while(k1 != start);
}
所以知道龟兔赛跑算法之后再看本题就很简单了(这题是外国网站的题,原来自己写的c++还不是国际认可标准...)
ac代码:
int bas[10] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81};
class Solution {
public:
int nex(int d)
{
int res = 0;
while(d)
{
res += bas[d%10];
d /= 10;
}
return res;
}
bool work(int d)
{
int k1 = d, k2 = d;
do
{
k1 = nex(k1);
k2 = nex(k2);
if(k2 == 1) return 1;
k2 = nex(k2);
if(k2 == 1) return 1;
}
while(k1 != k2);
return 0;
}
bool isHappy(int n) {
return work(n);
}
};
继续加油~