Codeforces 855E Salazar Slytherin's Locket(数位dp)

题意:

给出一个区间,问这个区间内有多少个数满足,将这个数转化为某个进制后,出现的所有数的数量都为偶数。

思路:

对l,r转化为相应的进制,然后再进行数位dp和十进制下进行是等价的,由于base<=10,所以需要开一个2+10维的数组dp[base][pos][][]...[],表示当前base下的第pos位之前所有出现过的数的奇偶性,然后再进行转移即可。

代码:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll dp[15][70][2][2][2][2][2][2][2][2][2][2];
int wei[70], pk[10];    //pk开全局,在用时记得回溯即可
int q, b;
ll l, r;
ll dfs(int pos, bool limit, bool lead)
{
    if(pos < 0)
    {
        if(lead) return 0;
        int res = 0;
        for(int i = 0; i < b; ++i)
            res |= pk[i];
        return res==0? 1: 0;
    }
    if(!limit && !lead && dp[b][pos][pk[0]][pk[1]][pk[2]][pk[3]][pk[4]][pk[5]][pk[6]][pk[7]][pk[8]][pk[9]] != -1)
        return dp[b][pos][pk[0]][pk[1]][pk[2]][pk[3]][pk[4]][pk[5]][pk[6]][pk[7]][pk[8]][pk[9]];
    ll res = 0;
    int up = limit? wei[pos]: b-1;
    for(int i = 0; i <= up; ++i)
    {
        if(lead && i == 0)
        {
            res += dfs(pos-1, limit&&i==wei[pos], 1);
        }
        else
        {
            pk[i] ^= 1;
            res += dfs(pos-1, limit&&i==wei[pos], 0);
            pk[i] ^= 1;
        }
    }
    if(!limit && !lead)
        dp[b][pos][pk[0]][pk[1]][pk[2]][pk[3]][pk[4]][pk[5]][pk[6]][pk[7]][pk[8]][pk[9]] = res;
    return res;
}
ll work(ll x)
{
    int pos = 0;
    while(x)
    {
        wei[pos++] = x%b;
        x /= b;
    }
    memset(pk, 0, sizeof pk);
    return dfs(pos-1, 1, 1);
}
int main()
{
    memset(dp, -1, sizeof dp);
    for(scanf("%d", &q); q--;)
    {
        scanf("%d %lld %lld", &b, &l, &r);
        printf("%lld\n", work(r) - work(l-1));
    }
    return 0;
}


继续加油~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值