题意:
给出一个区间,问这个区间内有多少个数满足,将这个数转化为某个进制后,出现的所有数的数量都为偶数。
思路:
对l,r转化为相应的进制,然后再进行数位dp和十进制下进行是等价的,由于base<=10,所以需要开一个2+10维的数组dp[base][pos][][]...[],表示当前base下的第pos位之前所有出现过的数的奇偶性,然后再进行转移即可。
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll dp[15][70][2][2][2][2][2][2][2][2][2][2];
int wei[70], pk[10]; //pk开全局,在用时记得回溯即可
int q, b;
ll l, r;
ll dfs(int pos, bool limit, bool lead)
{
if(pos < 0)
{
if(lead) return 0;
int res = 0;
for(int i = 0; i < b; ++i)
res |= pk[i];
return res==0? 1: 0;
}
if(!limit && !lead && dp[b][pos][pk[0]][pk[1]][pk[2]][pk[3]][pk[4]][pk[5]][pk[6]][pk[7]][pk[8]][pk[9]] != -1)
return dp[b][pos][pk[0]][pk[1]][pk[2]][pk[3]][pk[4]][pk[5]][pk[6]][pk[7]][pk[8]][pk[9]];
ll res = 0;
int up = limit? wei[pos]: b-1;
for(int i = 0; i <= up; ++i)
{
if(lead && i == 0)
{
res += dfs(pos-1, limit&&i==wei[pos], 1);
}
else
{
pk[i] ^= 1;
res += dfs(pos-1, limit&&i==wei[pos], 0);
pk[i] ^= 1;
}
}
if(!limit && !lead)
dp[b][pos][pk[0]][pk[1]][pk[2]][pk[3]][pk[4]][pk[5]][pk[6]][pk[7]][pk[8]][pk[9]] = res;
return res;
}
ll work(ll x)
{
int pos = 0;
while(x)
{
wei[pos++] = x%b;
x /= b;
}
memset(pk, 0, sizeof pk);
return dfs(pos-1, 1, 1);
}
int main()
{
memset(dp, -1, sizeof dp);
for(scanf("%d", &q); q--;)
{
scanf("%d %lld %lld", &b, &l, &r);
printf("%lld\n", work(r) - work(l-1));
}
return 0;
}
继续加油~