记得大二的时候,概率论里面有全概率公式这么一个东西,可是当时仅仅为了应付考试并没有体会到贝叶斯的强大,接触机器学习之后,渐渐体会到贝叶斯的神奇,也能通过贝叶斯来解释更多的模型。
贝叶斯由来
与日常思维相似的推导过程
- 以下是火影忍者剧情中的某个日常:
第一集:某风和日丽的上午,三代目火影翻阅着暗部递交上来的各国侦查信息,突然暗部X跑来告知,漩涡鸣人又来恶搞历代火影的雕像了!作为成年村长,三代目肯定要迅速想一下这事的可能性,总不能别人突然跑来跟你说历代火影复活入侵了你就发动最高戒备吧.
[稍等,频道切换一下:我们假定事件A为{历代火影的雕像被**了},事件B为{这是鸣人闯祸干的},三代目现在要考虑的是概率 P(B|A) ]
鸣人的日常基本就是各种恶作剧引起村人的注意力,而且他最大的武器就是恶搞雕像[ P(B|A)=(P(A|B)P(B)P(A) ,鸣人的闯祸概率比较大,而他恶搞雕像更是他闯祸的日常,且不论P(A),因为P(A)这个雕像从之前来看..基本上偶尔发生一次,比较固定]
大脑快速の推断,你觉得推断出来的结果是鸣人闯祸而且恶搞了雕像的概率是很大的.然后…..巴拉巴拉一堆 - 成语三人成虎背后的贝叶斯推理
假如暗部Y跑进来说,X说错了,是志乃干的,三代目脑袋里迅速的响应志乃恶作剧的概率(先验概率),志乃平时温和的性格以及较低的存在感,三代目觉得这肯定不可能.然后Z,K,W等等一堆暗部也跑进来了,都说是志乃干的!渐渐的,三代目开始怀疑了,由于一大堆人都说是志乃干的,脑子里对应的 P(A|B) 已经很大了,这个时候,三代目开始逐渐怀疑是否是志乃了,最后认为这很大可能性就是志乃干的!毕竟那么多人都说是他啊.
由已知推导未知
贝叶斯表达的数学式子可以让我们从现在所有的经验知识中推导某个事件发生的概率,这就是贝叶斯对于传统的统计方法最大的区别.
- 比如现在我们手上有一些医疗数据,需要根据医疗数据对老百姓提供一个合理的降低患癌率的建议.那么我们就要知道各种不良生活习惯对于致癌的影响多大对吧.
- 现在我们想知道患癌是抽烟引起的可能性是多少?我们可以通过调研以下数值来提供一个参考:
- 老百姓的患癌率是多少
- 老百姓抽烟的人群比例是多少
- 抽烟的人群中患了癌症的比例又是多少呢
然后我们可以通过贝叶斯公式根据已知的统计数值来的到我们之前想要但是又统计不出来的结果.
多么NICE的一件事!~~~
贝叶斯的应用
朴素贝叶斯
脑洞打开——-所有的特征都是相互独立的!!!
- 我们通过一个经典的数据集Adult引入朴素贝叶斯,给出一些居民的个人信息,比如,种族,学历,工种,年龄,年收入是否大于20W.然后给出另外一批居民类似的个人信息,但是不知道他们的年收入,现在让你根据居民的信息做出预测其个人的年收入是否达到了20W.
-现在我们需要最大化 p(Y|X) ,根据贝叶斯公式我们有 P(Y