HDU 4295 状态压缩dp + KMP

17 篇文章 0 订阅

链接:http://acm.hdu.edu.cn/showproblem.php?pid=4295

题意:给你一个字符串和他的4个子串,将这4个子串放到原串里面(可以重叠),问你最多能覆盖多少个字符,最少能覆盖多少个字符

解析:网赛的时候DP还是太水了,居然不敢想这个题目,现在看下,其实这个题目还是不难的,只是不好写,用KMP预处理子串可以插入的位置,dp【i】【j】【k】表示位置i,4个字符串的使用状态为j,k表示 从i往后已经覆盖了K个了,状态出来了,转移应该不难,注意:一个位置可以放多个串,这是难点,不过经过预处理就好了,一次性在某个位置放很多个串。

代码写的很挫,我以为预处理了这么多,应该蛮快的,没想到卡时间过的,看解析够了。。。代码惨不忍睹


#include<stdio.h>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 4100;
const int maxm = 70;
int dp[maxn][20][maxm][2],ok[4][maxn],next[maxm],n,m,l[4],son[4][4];
char s[maxn],p[4][maxm];
vector<int> h[maxn];
void set_next(int id);
void kmp(int id);
void init();
void solve();
int main()
{
    while(scanf("%s",s) != EOF)
    {
        n = strlen(s) , m = 0;
        for(int i = 0; i < 4; i ++) scanf("%s",p[i]),l[i] = strlen(p[i]),m = max(m,l[i]);
        init();
        solve();
    }
    return 0;
}
void init()
{
    memset(ok,false,sizeof(ok));
    memset(son,false,sizeof(son));
    for(int i = 0; i < 4; i ++) set_next(i),kmp(i);
    for(int i = 0; i < 4; i ++)
        for(int j = 0; j < 4; j++)
        {
            if(i == j) continue;
            if(l[j] > l[i]) continue;
            if(strncmp(p[i],p[j],l[j]) == 0) son[i][j] = true;
        }
    for(int i = 0; i < 4; i ++)
    {
        son[i][i] = true;
        h[i].clear();
        for(int j = 0,k; j < 16; j ++)
        {
            if(j & (1 << i));
            else continue;
            for(k = 0; k < 4; k ++)
                if((j & (1 << k)) && son[i][k] == 0) break;
            if(k >= 4) h[i].push_back(j);
        }
    }
    // for(int i = 0; i < 4; i++) for(int j = 0; j < h[i].size(); j ++) printf("I:%d   h:%d\n",i,h[i][j]);
}
void set_next(int id)
{
    int j = 0,k = -1,len = strlen(p[id]);
    next[j] = k;
    while(j < len)
    {
        if(k == -1 |p[id][j] == p[id][k]) j ++,k ++,next[j] = k;
        else k = next[k];
    }
}
void kmp(int id)
{
    int i,j,len = strlen(p[id]);
    i = j = 0;
    while(i < n)
    {
        if(j == -1 | s[i] == p[id][j]) i ++,j ++;
        else j = next[j];
        if(j == len) ok[id][i - j] = true;
    }
    if(j == len) ok[id][i - j] = true;
}
void solve()
{
    for(int i = 0; i < n; i ++)
        for(int j = 0; j < 16; j ++)
            for(int k = 0; k <= m; k ++)
                dp[i][j][k][0] = maxn,dp[i][j][k][1] = 0;
    dp[0][0][0][0] = dp[0][0][0][1] = 0;
    for(int i = 0; i < 4; i ++)
        if(ok[i][0]) dp[0][1 << i][l[i]][0] = dp[0][1 << i][l[i]][1] = l[i];
    for(int i = 1; i < n; i ++) //position
    {
        for(int j = 0; j < 16; j ++)
        {
            for(int k = 0; k < m; k ++)
                dp[i][j][k][0] = dp[i - 1][j][k + 1][0],dp[i][j][k][1] = dp[i - 1][j][k + 1][1]; //not insert
            dp[i][j][0][0] = min(dp[i][j][0][0],dp[i - 1][j][0][0]);
            dp[i][j][0][1] = max(dp[i][j][0][1],dp[i - 1][j][0][1]);
        }

        for(int j = 0; j < 16; j ++) //used?
        {
            for(int k = 0; k <= m; k ++) //have benn covered
            {
                for(int v = 0; v < 4; v ++)
                {
                    int a = j & (1 << v);
                    if(!a && ok[v][i])
                    {
                        int co = l[v],nco;
                        nco = max(k - 1,co);
                        if(nco > k - 1 && k) co = nco - k + 1;
                        else co = 0;
                        if(!k) co = l[v];
                        for(int tot = 0; tot < h[v].size(); tot ++)
                        {
                            dp[i][j | h[v][tot]][nco][0] = min(dp[i][j | h[v][tot]][nco][0],dp[i - 1][j][k][0] + co);
                            dp[i][j | h[v][tot]][nco][1] = max(dp[i][j | h[v][tot]][nco][1],dp[i - 1][j][k][1] + co);
                        }

                    }
                }
            }
        }
    }
    int mx = 0,mn = maxn;
    for(int k = 0; k < m; k ++) mx = max(mx,dp[n - 1][15][k][1]),mn = min(mn,dp[n - 1][15][k][0]);
    printf("%d %d\n",mn,mx);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值