Description
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是”1 X Y”,表示X和Y是同类。
第二种说法是”2 X Y”,表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
Sample Output
3
题解:
并查集题型, 每种动物创建3个元素, i-A, i-B, i-C, 分别表示动物i属于A, 动物i属于B, 动物i属于C, 并用这3*N个元素来构造并查集.
并查集里面的每一个组表示组内的所有情况都同时发生或不发生.
对于每一条信息, 按照如下步骤操作:T=1: 如果判断”x和y属于同一类”不会产生矛盾,则合并元素 x-A 和 y-A, x-B 和 y-B, x-C 和 y-C;
T=2: 如果判断”x吃y”不矛盾, 则合并元素 x-A 和 y-B , x-B 和 y-C, x-C 和 y-A;其中 判断x和y属于同一类是否会产生矛盾, 即判断”x-A, y-B为同一组, 或者 x-A, y-C同一组为同一组” 是否成立. 如果成立则说明之前已经确定过x,y动物之间的吃与被吃的关系,该句话与先前确定的状态产生了矛盾,这句话为假.
判断x吃y是否会产生矛盾, 即判断”x-A, y-A为同一组, 或者x-A, y-C为同一组”是否成立. 即判断x, y是否已经时同类, 或者已经时y吃x的关系. 如果是上述其中一种, 则该句话与之前已经产生的状态矛盾, 该句话为假.
判断x,y同类, 我们只需要判断x-A, y-A是否为同一组, 而不需要再判断x-B, y-B是否为同一组, 或者x-C, y-C是否为同一组, 因为这是冗余的判断,没有必要. 我们在合并元素的时候,已经把这样表示同样状态的3种状态都设置过了, 判断其中一种就可以了.
代码:
/*
* runtime error 好多次,是因为数组开小了,一气之下开大好几倍
* 超时N次,把cin 换成 scanf就过了
* */
#include <iostream>
#include <cstdio>
#define MAX_N 500000
using namespace std;
int par[MAX_N];
int N, K;
int ans = 0;
void init(int n) {
for (int i = 1; i <= n*3; i++) {
par[i] = i;
}
}
int find(int x) {
if (par[x] == x) return x;
return par[x] = find(par[x]);
}
void unite(int x, int y) {
int px = find(x), py = find(y);
if (px != py) {
par[px] = py;
}
}
int main() {
int T, X, Y;
cin >> N >> K;
init(3 * N);
for (int i = 0; i < K; i++) {
scanf("%d%d%d", &T, &X, &Y);
if (X <= 0 || N < X || Y <= 0 || N < Y) {
ans++;
continue;
}
if (T == 1) {
if (find(X) == find(Y + N) || find(X) == find(Y + 2 * N)) {
ans++;
continue;
}
else {
unite(X, Y);
unite(X + N, Y + N);
unite(X + 2 * N, Y + 2 * N);
}
}
else {
if (find(X) == find(Y) || find(X) == find(Y + 2 * N)) {
ans++;
continue;
}
else {
unite(X, Y + N);
unite(X + N, Y + 2 * N);
unite(X + 2 * N, Y);
}
}
}
cout << ans << endl;
return 0;
}