数据可视化|用散点图进行数据分析

文章来源:林骥微信公众号

作者:林骥

 

01

你好,我是林骥。

散点图的用途有很多,我认为它的核心价值,在于应用相关思维,发现变量之间的关系。

散点图就像一扇窗,打开它,并仔细观察,能让我们看见更多有价值的信息。

比如说,假设表格中有 10000 个客户年龄和消费金额的数据:

我们可以计算每一个年龄对应的人均消费金额,比如说,所有 20 岁客户的平均消费金额约为 1383.69 元,然后我们可以画出一张散点图:

从图中可以看出,客户的年龄与人均消费金额有很强的相关性,其中应用了线性回归算法,得到一条拟合的直线,并用公式表示出来,  接近于 1 ,代表算法拟合的效果很好。

02

接下来,我们看看具体实现的步骤。

首先,导入所需的库,并设置中文字体和定义颜色等。

# 导入所需的库
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

# 正常显示中文标签
mpl.rcParams['font.sans-serif'] = ['SimHei']

# 自动适应布局
mpl.rcParams.update({'figure.autolayout': True})

# 正常显示负号
mpl.rcParams['axes.unicode_minus'] = False

# 禁用科学计数法
pd.set_option('display.float_format', lambda x: '%.2f' % x) 

# 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色
c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF',
     '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC',
     '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}

其次,从 Excel 文件中读取数据,并调用 sklearn 中的算法,得到拟合的直线和评分结果。

# 数据源路径
filepath='./data/客户年龄和消费金额.xlsx'

# 读取 Excel文件
df = pd.read_excel(filepath, index_col='客户编号')

# 定义画图用的数据:年龄和人均消费金额
df_group = df.groupby('年龄').mean()
x = np.array(df_group.index).reshape(-1, 1)
y = np.array(df_group.values)

# 用管道的方式调用算法,以便把线性回归扩展为多项式回归
poly_reg = Pipeline([
    ('ploy', PolynomialFeatures(degree=1)),
    ('lin_reg', LinearRegression())
])

# 拟合
poly_reg.fit(x, y)

# 斜率
coef = poly_reg.steps[1][1].coef_
# 截距
intercept = poly_reg.steps[1][1].intercept_
# 评分
score = poly_reg.score(x, y)

接下来,开始用「面向对象」的方法进行画图。

# 使用「面向对象」的方法画图,定义图片的大小
fig, ax = plt.subplots(figsize=(8, 6))

# 设置标题
ax.set_title('\n客户每年长一岁,人均消费金额增加' + '%.2f' % coef[0][1] + '元\n', loc='left', size=26, color=c['深灰色'])

# 画气泡图
ax.scatter(x, y, color=c['蓝色'], marker='.', s=100, zorder=1)

# # 绘制预测线
y2 = poly_reg.predict(x)
ax.plot(x, y2, '-', c=c['橙色'], zorder=2)

# 隐藏边框
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)

# 隐藏刻度线
ax.tick_params(axis='x', which='major', length=0)
ax.tick_params(axis='y', which='major', length=0)

ax.set_ylim(15, 65)
ax.set_ylim(1000, 5000)

# 设置坐标标签字体大小和颜色
ax.tick_params(labelsize=16, colors=c['深灰色'])
ax.text(ax.get_xlim()[0]-6, ax.get_ylim()[1], '人\n均\n消\n费\n金\n额', va='top', fontsize=16, color=c['深灰色'])

# 设置坐标轴的标题
ax.text(ax.get_xlim()[0]+1, ax.get_ylim()[0]-300, '年龄', ha='left', va='top', fontsize=16, color=c['深灰色'])

# 预测 55 岁的人均消费金额
predict = poly_reg.predict([[55]])

# 标注公式
formula = r'$\mathcal{Y} = ' + '%.2f' % coef[0][1] + '\mathcal{X}' + '%+.2f$' % intercept[0] + '\n' + r'$\mathcal{R}^2 = ' + '%.5f$' % score
ax.annotate(formula, xy=(55, predict), xytext=(55, predict+500), ha='center', fontsize=12, color=c['深灰色'], arrowprops=dict(arrowstyle='->', color=c['橙色']))

plt.show()

你可以前往 https://github.com/linjiwx/mp 下载数据文件和完整代码。

03

当业务指标很多的时候,应该挑选什么指标来进行分析,这件事很考验分析者的功力,往往需要对业务有比较深刻的理解。

为什么很多人精通各种工具技术,手上也有很多各种各样的数据,却没有做出让领导满意的图表?

好的图表,就像是给近视的人戴了一副眼镜,让读者以更清楚的方式去理解数据。

好的图表,就像是神奇的催化剂,加快了从数据到决策的过程,让决策者更加快速地掌握有助于做出决策的信息。

好的图表,能把复杂的问题简单化,帮我们更精准地理解业务的现状,甚至预测未来。

我们应该记住,无论多么漂亮的图表,如果不能从中获取有价值的信息,那么也是一张没有「灵魂」的图表。

很多时候,我们面对的问题,并不是没有数据,而是数据太多,却不知道怎么用。

熟悉数据分析的思维,能帮我们找到更重要的数据,排除过多杂乱数据的干扰。

如果把数据分析比作医生看病的过程,那么可以分为以下 4 个阶段:

(1)描述:检查身体,描述指标值是否正常。

(2)诊断:询问病情,找到疾病的产生原因。

(3)预测:分析病情,预测病情的发展趋势。

(4)指导:开出药方,提出有效的治疗建议。

我们要尽可能地理解业务并提供价值,从数据的加工者,转变成故事的讲述者,甚至是问题的解决者。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值