解读 | 数据人需要掌握的5个商业技能

在这里插入图片描述

CDA数据分析师 出品
作者:徐杨老师

编辑:Mika

各位小伙伴大家好!我是徐杨老师,好久不见!

今天给大家带来5个数据科学家需要的商业技能,聊聊商业与数据科学两者如何携手并进。

这时候有同学想问了,数据科学家为什么要有商业基础呢?

假如你是一位数据科学家,擅长数学和统计学,熟练使用SQL和Python,对数据清洗可视化、统计建模、机器和深度学习等也很有经验。

但是offer却迟迟没到手,这是为什么呢?

也许老板是这么想的:

我需要的是一个可以将数据与商业结合的人,能解决复杂的数据问题,与管理层分享他的见解。

所以今天为你提供五个关键的业务知识方向,向你展示如何利用数据来实现实际的业务解决方案。

01 了解公司的业务战略目标
首先,了解公司的业务战略目标,并将其作为整个数据收集,建模和解释过程的指导。

在这里插入图片描述

并且确定受众,因为即使总体战略目标相同,每个受众也有不同的需求。熟悉关键的绩效和分析,从中获得可操作的知识。

举个例子:

我们想了解推广服务的情况如何?
在多大程度上吸引了新的客户?
客户如何通过网站点击,成为我们最赚钱的客户?
02 收集正确的数据
了解必要的数据是否已经存储在组织中以及以何种格式存储。如图像、文字或声音这样的非结构化数据也要收集,这可帮助企业额外挖掘出更深入的信息。

定量数据是从业务或通过调查收集的,比较容易分析和直观地表示。

在这里插入图片描述

然而,要提供更多的丰富性和上下文,离不开定性数据也就是非结构化数据。它的分析涵盖了影响某些行为的因素,如顾客满意情况或顾客意见、质量调查等等。

03 分析数据
首先利用BI工具,多维度探索数据。还可以进行文本挖掘,进行交互式深入研究。使用数据模型和算法模型,为出现的业务信息做出决策。

在这里插入图片描述

04 有效地展示与落地分析结果
为了让你的见解清晰而引人注目,你需要使用不同类型的可视化工具,如可交互图表、动图等,从收集的数据中获得业务价值。

在这里插入图片描述

同时,如果输出的是算法模型,可以参考MLOps的落地流程来最大化分析价值,下一期我们就来讲一讲MLOps,敬请期待。

05 理解基于证据的决策是如何做出的
作为一名数据科学家,你应该对业务和技术的学习和改进有着强烈的欲望。有时要由你来激发整个组织的分析能力,并用于好的方面。

在这里插入图片描述

如果你在等待下一次面试时碰巧在看这个视频,就快速记住这个基本的数据科学与商业分析相结合速成指南吧!

如果大家还有其他问题,就在评论区留言吧!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值