• 博客(203)
  • 收藏
  • 关注

原创 麦肯锡11月最新报告《Agentic AI安全部署手册》:Agentic AI安全不是“贴膏药”,而是“打地基”(附报告原文

Agentic AI不是“更聪明的工具”,而是新型生产力关系的重构 ——人类从“操作者”变为“监督者”,Agent从“执行者”变为“责任主体”。“In an agentic world, trust is not a feature. It must be the foundation.”(在智能体的世界里,信任不是一项功能,而必须是基石。所以,别再问“我们能不能上Agent?要问:“我们的安全水位,配不配得上Agent的智能水位?毕竟——AI可以试错,企业不能重来;Agent可以重启,声誉无法重载。

2025-12-08 15:32:35 788

原创 保姆级教程!PaddleOCR-VL 私有化部署全流程,109 种语言 SOTA 模型直接用

PaddleOCR-VL是一款专为文档解析而设计的、资源高效的 SOTA 模型。其核心组件是 PaddleOCR-VL-0.9B,这是一款紧凑而强大的视觉语言模型 (VLM),它将 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型相结合,从而实现精准的元素识别。: PaddleOCR-VL 支持 109 种语言,涵盖全球主要语言,包括但不限于中文、英文、日文、拉丁文和韩文,以及采用不同文字和结构的语言,例如俄语(西里尔字母)、阿拉伯语、印地语(梵文)和泰语。

2025-11-27 11:37:42 733

原创 Linux环境安装ComfyUI,部署SeedVR2(2025.11.13 - Version 2.5.10)节点实现图像视频超分(放大)

SeedVR22.5.10于2025年11月13日正式发布,适用于 ComfyUI,支持高质量视频和图像放大。(一)核心能力高质量基于扩散的放大:视频和图像增强的一步扩散模型时间一致性:通过可配置的批处理保持视频帧间的一致性多格式支持:支持视频和图像的 RGB 和 RGBA(alpha 通道)任何视频长度:适合任何视频长度(二)模型支持多种模型变体:3B 和 7B 参数模型,具有不同精度选项FP16、FP8 和 GGUF 量化。

2025-11-26 17:54:15 1109

原创 AI 听不懂你的需求?这篇 Prompt 指南,帮你打通 “沟通任督二脉”

提示工程归根结底是沟通:说出最能帮助 AI 清晰理解你意图的语言。从本指南开头介绍的核心技巧开始。持续使用,直到它们成为第二天性。只有在解决特定问题时才加入高级技巧。从核心技巧开始熟练后自然知道什么时候加入进阶技巧不要追求“最多技巧”,而是“最少但足够”提示词越是明确、结构越合理,模型越能稳定输出随着“上下文工程”兴起,提示词工程并没有变弱,相反,它是上下文工程的核心构件。AI 时代,懂 AI 的人不是最厉害的;能让 AI 更好用的人,才是真正的增幅者。

2025-11-25 15:22:32 515

原创 “不会选数字人?” 收好这份2025选型清单,照着选就行!(建议收藏)

其3D高斯泼溅技术经过特殊优化,通过StyleUnet+MLP混合建模和动态高斯点云技术,在保证高质量渲染的同时,将单个数字人模型的体积控制在100-200MB,使其能够在高端手机上实现60FPS的流畅渲染和1-2秒延迟的实时对话。例如,MimicTalk通过“动静结合”的微调策略,既优化了基于3D人脸表征(tri-plane)的静态细节(如牙齿、头发),也利用LoRA技术对模型参数进行高效微调,增强了肌肉运动等动态细节的真实感,从而在短时间内生成高质量、高表现力的个性化说话人脸。总体投入成本是否可控?

2025-11-24 14:01:10 825

原创 谷歌 Gemini 3+Nano Banana Pro 双杀!阿里字节蚂蚁新品集体破局

在多项测试中表现优异,SWE - Bench Verified 测试准确率 77.9%,Terminal - Bench 2.0 测试准确率 58.1%,均优于谷歌 Gemini 3 Pro,目前已集成到多款开发环境,助力开发者大幅提升工作效率。该 APP 依托阿里在大模型领域的技术积累,聚焦开源优势,为用户提供智能问答等基础功能。搭载该模型的机器人可在办公室制作咖啡、组装纸箱等,能连续一整天制作意式浓缩咖啡,还大幅降低了任务失败率,将具身智能落地到办公场景,推动机器人实操应用的发展。

2025-11-21 11:30:14 1182

原创 奥特曼都追更!Gemini 3免费开测:一句话出3D模型,理科生都服的推理力(附使用指南)

从Gemini 1到3,能明显感觉到AI的变化:以前是“我问你答”,现在是“我给目标,你给结果”。它不再是炫技的工具,而是真能帮你省时间、解决麻烦的“帮手”。现在Gemini 3 Pro已经全量开放,不管是学生、职场人还是程序员,都能直接去体验。不用怕学不会,它对指令的理解特别直接,越简单的要求反而做得越好。你最想用它解决啥问题?是帮你整理考研笔记,还是做菜谱、写代码?你可以在评论区大开脑洞。实操入口:手机端直接更Gemini App,选“Thinking”模式;

2025-11-19 14:59:22 861

原创 大模型训练微调推理GPU资源选型指南

本指南系统性地解答了AI大模型训练与微调、推理过程中,在GPU算力资源选型、采购、部署和安全方面可能遇到的核心问题。

2025-11-18 10:53:06 671

原创 实测两款热门 OCR!DeepSeek-OCR 和小红书 dots.ocr 谁更能打?

这几年OCR技术真是彻底变了样,从之前靠规则硬刚,到现在直接端到端的大模型搞定,开源社区也出了几个特别能打的:DeepSeek-OCR:当红炸子鸡。专门为中文优化,识别准、表格还原强,像合同、报表、扫描件这类正式文档,处理起来非常顺手。dots.ocr(小红书开源):专门对付那种背景花、字体飘、还带圆角的“社交体质”图片——小红书上的爆款图文,它基本都能精准识别出来。在GitHub上已经攒了5.6K Star,属实有点火。不光客户有需求,我们自己内部也在用。

2025-11-13 10:00:00 559

原创 基于MattePro大模型实现图片与视频扣像背景变透明

相比智能抠图,自定义抠像提供了更多的控制选项,用户可以通过画笔工具手动调整抠图区域,适合处理复杂或精细的抠图任务。例如,用户可以使用快速画笔工具进行精细调整。

2025-11-11 10:00:00 1825

原创 离大谱!我部署的MiniMax M2模型,竟说自己是ChatGPT?是血赚还是翻车?附部署教程。

MiniMax-M2重新定义了智能体的效率。它是一款紧凑、快速且经济高效的MoE模型(总参数2300亿,其中100亿为激活参数),专为编码和智能体任务的卓越性能而打造,同时保持强大的通用智能。仅需100亿个激活参数,MiniMax-M2即可提供当今领先模型所应具备的复杂、端到端的工具使用性能,同时采用精简的外形设计,使部署和扩展比以往任何时候都更加轻松。第三方评测机构Artificial Analysis的测试中,Minimax M2以61分获得了开源模型第一,紧随Claude 4.5 Sonnet。

2025-11-06 10:25:30 1030

原创 存储不够用?镜像不会保存?那是你还没学会这招!

用 CCI 跑模型时,你是不是也被这俩问题卡过?自带 50G 存储根本不够用,下一个大模型就直接满了,数据删也不是、留也不是;单卡调完环境想迁到多卡,结果镜像不会存,之前的配置全白费,又得从头装…别慌!今天就给大家一套「数据不丢 + 环境复用」的解决方案,从开通配置到多卡迁移,一步一步跟着走就行~● 大容量存储:数据再也不怕丢 ,再也没有容量焦虑○ 操作路径:找到「存储管理」→ 点击「开通新存储」;○ 关键选择:选对应的存储类型(按项目需求)、填需要的容量(比如模型大就多开点),点开通;

2025-11-04 15:33:26 701

原创 显存不够、算力告急、部署复杂?九章智算云带着141G显卡等3重惊喜来了

不用等活动、不用拼手速,只要注册就能领 10 度免费算力,直接体验新显卡的超强性能!注册/登录:访问九章智算云id=online领取10度算力,从产品中心进入CCI控制台,你将会收到一个弹窗,如下点击立即领取后去你的【费用中心】即可看到你领取到的10度算力。

2025-10-28 16:57:44 886

原创 抢鲜体验!DeepSeek-OCR在线服务,即刻感受文字识别的魅力

是由DeepSeek 团队推出的先进视觉语言模型,专注于通过光学压缩技术高效处理长文本内容。模型采用编码器与解码器的组合设计,在保证高分辨率输入的同时,显著降低了激活内存占用和视觉标记数量。在10 倍压缩比下,OCR 精度可达97%;即便在20 倍压缩比下,仍能保持约60% 的识别准确率。DeepSeek-OCR 支持多种分辨率模式,适用于多语言文档处理,同时能够解析图表、化学公式等复杂内容,为大规模文档识别与处理提供高效可靠的解决方案。

2025-10-28 10:02:43 858

原创 【九章智算云重磅上新】10 倍压缩率 + 97% 精度!DeepSeek-OCR 让文档处理进入「秒级时代」

DeepSeek-OCR 创新性地通过光学二维映射来压缩长上下文,实现高效「看图识文」,替代传统大模型“逐字阅读”的机制,在 OmniDocBench 权威评测中,仅用100 个视觉 Token即超越 GOT-OCR2.0(256 Token),并在 800 Token 内性能碾压 MinerU2.0(近 7000 Token)。这种「以图载文」的技术路径,使文档处理效率提升 10 倍,单张 A100-40G 显卡每日可处理超 20 万页文档,真正实现「算力不变,产能翻倍」。

2025-10-22 18:25:09 1115

原创 DeepSeek-V2-Exp:一键部署,私有化轻松搞定,告别繁琐下载!

DeepSeek-V2-Exp:一键部署,私有化轻松搞定,告别繁琐下载!

2025-10-20 15:36:37 1159

原创 “AI 曼哈顿计划”:科技竞赛还是人类挑战?

现实中的“对齐”很多时候只是“公关洗白”或“安全洗白”,比如让聊天机器人表现得更“友善”,但这远不足以解决AGI真正带来的深层风险。若参照阿波罗计划的投入标准(年均2440亿美元,占GDP的0.8%),连续三年可采购约2700万块H100等效GPU,支持为期100天的AGI模型训练,总算力约为3e29 FLOP。最终,要想在AGI领域赢得真正的“胜利”,需要超越眼前的技术竞赛,建立基于“伦理人本主义”的社会共识。许多AI研究者指出,目前的AI进展主要依赖“规模堆叠”,缺乏对“智能本质”的真正理解。

2025-07-09 14:22:21 1455

原创 手把手实战:Flux Kontext Dev 开源,最强一致性图像编辑模型!

FLUX.1 Kontext 是 Black Forest Labs 推出的突破性多模态图像编辑模型,支持文本和图像同时输入,能够智能理解图像上下文并执行精确编辑。其开发版是一个拥有 120 亿参数的开源扩散变压器模型,具有出色的上下文理解能力和角色一致性保持,即使经过多次迭代编辑,也能确保人物特征、构图布局等关键元素保持稳定。

2025-07-03 17:01:02 2195

原创 手把手实战:零基础教程!照片一键生成科目三

Magic Animate 是一个基于扩散模型的人像动画框架,由新加坡国立大学的 Show Lab 和字节跳动团队开发。它可以从单张图片和一个动作视频中生成动画视频。这个工具在保持时间一致性、忠实保留参考图像以及显著提高动画真实感方面表现出色。

2025-06-27 14:26:57 576

原创 人工智能三Deep:三大“Deep”力量如何共塑AI黄金时代

从长远来看,这将被证明是一个高明的选择,它不仅立刻提高了深度学习的研究关注度,而且未来以此为基础的AI研究更是促进了整个AI技术的突破和行业的广泛应用。DeepMind 的技术路径一直偏爱强化学习,就像一位痴迷于“闯关学习法”的学霸,它最爱的练功房是各种游戏世界—从围棋棋盘到电子游戏,在这里不断试错、总结,练就了一套强大的“强化学习”本领。在谷歌这一代号“谷歌猫”的项目中,计算机系统通过自主学习1000万张未标注的YouTube图片,首次在没有人工干预的情况下识别出了“猫脸”这一概念。

2025-06-26 13:59:34 1593

原创 全在这里了,小白也可以一文读懂的“世界模型”

我们先来回顾一下近期相关事件:6 月 18 日,Midjourney 发布首个 AI 视频生成模型 V1,标志其从静态图像创作向动态多媒体内容生产转型。V1 支持上传或用其他模型生成图像来生成视频片段,但有无法生成音频、时长限制等不足。Midjourney 透露长期目标是将多种技术融合为"世界模型",使用户能在动态生成的虚拟环境中自由探索。6 月 20 日,在华为开发者大会 2025 上,发布基于盘古多模态大模型的世界模型。该模型能为智能驾驶、具身智能机器人训练构建数字物理空间。

2025-06-25 16:57:01 1455

原创 当AI“阅读”蛋白质天书:GPU+BioNeMo驱动医药革命

它通过提供针对特定领域优化的模型和工具,大幅加速了构建和调整生物分子AI最耗时且成本最高的阶段,并能轻松集成至任何基于GPU的计算环境中。就像ChatGPT理解人类语言,ESM-2、ESM-3等模型通过“阅读”数十亿蛋白质序列,学会了预测蛋白质结构、设计新药物——而这一切的关键,在于GPU算力与算法的双重突破。2024年诺贝尔化学奖授予蛋白质计算设计领域,背后正是一场静默的革命:全球实验室正在用GPU超算训练蛋白质大语言模型(pLMs),让AI从海量序列中破译生命密码。

2025-06-20 13:48:34 472

原创 小型企业“数据不怕哇”公司困境中的算力突围

在这场变革中,头部企业凭借雄厚的数据储备、强大的算力基建和顶尖的算法团队快速构建壁垒,而广大中小企业却面临三座横亘眼前的“AI大山”——数据匮乏、算力不足、算法门槛高。一台H200服务器买的话要200多万,租的话,一个月也得8万多,我们还得引进大模型技术人员,我们账上的钱够撑几天?她想起自己刚进公司时,被嘲笑"只会做Excel表格",如今公司也站在了同样的悬崖边,心里忐忑不安,公司不会要裁员吧?窗外,北京的夜空繁星点点,这家曾经濒临绝境的小公司,如今手握自己的AI未来。(深吸一口气):"这真是雪中送炭哪。

2025-06-19 13:57:16 813

原创 大模型蒸馏:从DeepSeek到李飞飞的50美元革命

2025年2月初,人工智能领域迎来两起标志性事件:中国公司DeepSeek发布的R1模型以“高性能+低成本”颠覆行业叙事,而“AI教母”李飞飞团队仅用和训练出媲美顶尖模型的s1-32B推理模型。这两项突破的核心技术均有一个关键词——。这一技术如何打破传统训练范式?其背后隐藏着怎样的科学逻辑与工程智慧?本文将深入解析。

2025-06-17 18:07:24 855

原创 手把手实战:零基础教程!LLaMA-Factory微调Qwen2-VL

具体实现过程看以下实战步骤。LLaMA-Factory微调Qwen2-VL实战步骤1、部署环境1)点击LLaMA-Factory镜像,准备开始部署2)点击配置&部署按钮3)填写自定义集群信息—>点击部署按钮4)部署完成之后,选择Notes.txt 显示登录地址5)设置微调参数最后参数会生成相关命令:以下是本次训练的核心参数与说明:为了让模型更贴近文旅领域的真实应用场景,本次微调采用了名为的图文对话数据集。该数据集由阿里达摩院团队开源发布。

2025-06-16 13:40:14 1753 1

原创 一文彻底读懂:英伟达GPU分类、架构演进和参数解析

每个CUDA核心只处理简单的数学运算(如浮点加减乘除),但通过集成数千个这样的核心,GPU能同时处理海量数据,速度远超CPU。显存位宽是GPU和显存之间的“数据通道宽度”,单位是bit(位),比如128bit、256bit、384bit等。位宽越大,GPU能同时读取的数据越多。其不断迭代的芯片架构与持续攀升的算力天花板,恰如一场自我突破的技术突围 —— 每一次架构升级,都是对行业算力边界的重新定义。在我们谈论算力的时候,常常会提到的半精度 (FP16)、单精度(FP32)、双精度(FP64)又是什么?

2025-06-13 10:34:45 2676

原创 不用公式!用生活例子讲透Transformer,大模型为何强大

比如,在句子“The animal didn't cross the street because it was too tired.”中,当他们看到“it”时,就会特别关注“animal”,因为“it”指的就是“animal”。当“自注意力”员工处理完一个词的信息后,他们就会对每个词的信息进行独立的、统一的加工,就像给每个词的信息做个“标准化处理”,让它们更容易被下一步使用。“透明度”更高(能看到它在看什么): 我们可以通过一些方法,看到模型在处理某个词时,它的“注意力”集中在输入句子的哪些词上。

2025-06-10 12:34:39 430

原创 奥特曼:大模型可靠性已过拐点,企业如何跑步入场?

它们也学得最快。谈及 OpenAI 企业业务的爆发式增长,他透露:「与一年前相比,我们与深度合作的头部企业交流时发现,促使它们加速落地的关键不再是『适应时间』,而是。

2025-06-09 12:54:44 835

原创 这个女人,如何让一众硅谷大佬夜不能寐

蓝色的线是电力的成本,绿色的线是计算机内存的成本,红色的线是 AI 推理的成本,很明显, AI 推理的成本降得最快,短短的两年就降了90%,直接跌到了地板上。不仅越来越多的公司在业绩电话会里讨论AI,而且,越来越多的公司实实在在地在使用AI,这张图描述的是微软云的 AI 使用量,在过去的一年, AI 的使用量翻了 5 倍。要知道Waymo的打车成本跟传统的网约车差不多,这说明哪怕价格一样,消费者也更喜欢无人驾驶的出租车,大家可以想一想为什么,把可能的原因写到本文的评论区里。这篇报告都有哪些内容值得关注呢?

2025-06-06 12:06:57 1067

原创 手把手实战:一张图 + 一段音频,快速生成数字人视频!

你是否梦想用一张照片和一段音频,快速生成一个“会说话的数字人”?腾讯开源的项目正是为此而生。,通过输入一张人物照片和一段语音音频,就能自动生成嘴型精准、表情自然的视频片段,广泛适用于虚拟数字人、虚拟主播、AI 视频解说等场景。先给大家看看效果:👇,时长00:31数字人视频效果。

2025-06-04 16:11:39 2385

原创 AI4S:LLM驱动科研的三个层级 & 科研算力专项支持计划

最近香港科技大学团队在最新论文系统梳理了大语言模型(LLM)在科研各阶段的角色和价值,为理解 AI 从 “效率工具” 到 “自主代理” 的质变提供了理论框架,其提出的三层自主性模型(工具层→分析师层→科学家层)与全球顶尖实验室的实践形成呼应,勾勒出 AI 驱动科学革命的未来图景。在论文中,香港科技大学团队基于科学研究的六个核心阶段(观察与问题定义、假设发展、实验设计与执行、数据分析、结论验证、迭代完善),系统梳理了LLM在科研中从工具到自主代理的角色演进,揭示其在不同自主性层级的典型应用与挑战。

2025-05-29 11:11:02 1137

原创 世界模型:AGI突破口?一文了解NVIDIA Cosmos 平台

Cosmos 赋予 AI “物理直觉”,Omniverse 为这种 “直觉” 提供了可以施展的舞台,使 AI 能够在虚拟环境中观察、分析和预测各种物理现象,进行各种尝试,不用担心造成损失,还能创造出大量带有物理规律的模拟数据,有助于提高 AI 的学习效率,让 AI 更好地理解物理世界中的物体关系、运动规律以及各种物理交互。这些数据来自于专有视频数据集和公开的互联网视频,通过精心筛选和处理,为模型提供了广泛的视觉体验,使其能够学习到不同场景下的物理规律和视觉特征。要实现AGI,需要先在“世界模型”取得突破。

2025-05-28 11:30:02 1341

原创 手把手实战:如何用DeepSeek进行股票分析?

同时,我们具备大模型全栈技术能力,可协助您完成从模型训练、微调、部署、调优的全过程,助力构建安全、高效的AI系统。配置“模型供应商”,选择 “OpenAI-API-compatible”,输入申请到的 “API Key” 和 “URL” 后点击“保存”,如下图示例完成 “AlayaNew/DeepSeek-R1” LLM的配置。通过精心设计的提示词,可以激活模型中与特定任务相关的知识,使其在无需大规模微调的情况下,直接应用于下游任务。,任何技术都有局限性,审慎的态度和科学的投资框架始终是风险管理的核心。

2025-05-21 16:23:15 4725 1

原创 扎克伯格与纳德拉:开源模型蒸馏工厂如何重塑产品生产逻辑

这将意味着模型不再是“买来的”,而是“炼出来的”,开源模型的最大优势不再是参数量和GPU数量,而在可定制能力,只有少数人能玩的大模型将从“神坛”走向“普罗大众”,如果说基模型是油田,那么“蒸馏工厂”就是炼油厂,蒸馏出来的各种各样的模型就是千家万户的储油桶。2.释放协同潜力:实现一个老师模型到多个蒸馏模型之间的"一对多"以及多个老师模型蒸馏至一个模型的"多对一"的关系,这些蒸馏模型可与GitHub Copilot等工具或其他工作流组合,通过 MCP 服务器调用其他 AI Agent,释放大小模型协同的潜力。

2025-05-19 14:25:46 1041

原创 将大模型幻觉降低90%,一个神奇的写作Agent

关注问题本质,关注如何解决问题,关注如何创造价值选择通过分层设计,实现高效内容生产。每一层都针对内容创作流程中的关键环节进行优化,形成完整的智能化解决方案。1.1 需求分析层作为系统的首要环节,采用NLP技术对用户输入进行深度解析。通过意图识别自动区分写作类型(如技术文档、营销文案、社交媒体内容等),并结合用户画像分析目标受众特征(年龄层、专业背景等)。系统内置需求模板,包含多类常见写作场景的标准化需求描述,确保输出精准匹配核心需求。

2025-05-15 15:51:25 1393

原创 vLLM vs SGLang:大模型推理框架,谁更适合你的需求?

总体而言,vLLM 在模型支持和应用生态方面具有优势,而 SGLang 在推理性能优化表现相对出色。性能上,SGLang 在顺序请求和并发请求场景中始终优于 vLLM。在并发负载下,差异尤其明显,SGLang 保持稳定吞吐量的能力凸显了其卓越的可扩展性和鲁棒性。这些发现表明,对于需要高并发和高效处理大量请求的应用程序来说,SGLang 是更好的选择。目前vLLM和SGLang的代码库已开始互相借鉴(如vLLM计划引入RadixAttention),但短期内仍是差异化竞争。

2025-05-13 16:18:29 1300

原创 摩尔定律已死?一文带你看透摩尔定律如何穿越周期

Ollama是一个旨在简化在本地运行大型语言模型(LLM) 的轻量级推理工具,强调隐私保护、高性能和本地控制权。Xinference 支持多种推理引擎,Xinference需要单独安装支持的推理引擎,当满足模型格式为pytorch、gptq或者awq等条件时,Xinference 会自动选择 vLLM 作为引擎来达到更高的吞吐量。此外,Xinference 也支持 SGLang 后端,可根据具体的模型和应用需求,灵活选择使用 SGLang 进行推理,以充分发挥其在集群部署、大规模模型推理等方面的优势。

2025-05-12 14:59:51 1721

原创 别让GPU摸鱼!榨干它!

通过在 L2 Cache 中缓存常用数据,可以减少 GPU 与主内存之间的数据传输量,提高数据访问效率,特别是在处理大规模数据和复杂计算任务时,L2 Cache 能够显著提高 GPU 的性能和响应速度,有助于提升整个图形处理和计算过程的流畅性。由于GPU利用率只是判断是不是有SM在执行状态,不考虑在执行状态的SM的数量,类似判断一个杯子中是不是有水,有一滴水也作数,十滴水也是一样,这样就不能精确到各个SM,无法在GPU内部实现优化,这样看,GPU利用率不太准,只是从GPU层面(宏观)笼统判断。

2025-05-09 11:35:25 1428

原创 HF下载太慢?Alaya NeW的加速神器让你的模型“飞“起来!

Alaya NeW平台推出的DingoSpeed自托管镜像服务,旨在解决从Hugging Face下载模型和数据集速度缓慢的问题。通过本地化存储、智能分块调度和高效缓存,DingoSpeed显著提升了下载速度,优化了AI资源的全生命周期管理。用户只需设置环境变量并选择镜像站点,即可享受极速下载体验。实测数据显示,DingoSpeed在小模型和大模型下载速度上分别比传统方式快30%和100%以上,且内存占用更低、稳定性更高。DingoSpeed的核心技术包括本地镜像加速、并行分块下载和智能缓存复用,有效突破了

2025-05-09 10:56:59 1205

原创 手把手实战:开源工具 Easy Dataset 三步生成数据集

例如,当我们尝试使用 DeepSeek 上传一份原始文档并通过提示词让模型生成QA数据集时,可以观察到上述缺陷的存在:即使重复操作,基于相同输入文件生成的结果依旧保持一致且质量有限。项目创建完成后,进行模型配置,这一步可以根据各自情况配置,配置也非常简单,选择“项目设置” -> “模型配置”,如下图。在某些专业性强的领域,如医疗健康或法律服务中,由于严格的隐私保护法规限制,公开可用的数据集相对稀缺,获取难度较大。选择“问题管理”,勾选生成的问题,选择“批量构造数据集”,过程仍需等待一段时间。

2025-05-08 11:19:22 6530 5

AutoML技术白皮书-《引入AutoML破局企业智能》

九章云极DataCanvas联合全球知名的研究机构IDC中国重磅发布《引入AutoML,破局企业智能白皮书》,探讨AutoML创新应用的新未来

2022-10-27

首个ModelOps技术白皮书-《ModelOps技术应用及趋势白皮书》

业内首个ModelOps白皮书由九章云极DataCanvas撰写发布,白皮书聚焦 ModelOps 技术应用及未来趋势,对 ModelOps 平台的主要功能、关键技术及平台应用进行详细剖析 

2022-10-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除