为什么推荐做数据分析师?
以前的增量时代,每天都在开发新的领域,新的市场。尤其是在互联网、电商等领域的红利期,似乎只要单点突破,就能获得市场。当时的商业运作主要靠经验和直觉驱动。比如跨境电商早期,依托世界工厂平台的优势,国内厂商只需要根据经验选择产品就能卖得很好。
但随着规则的成熟和更多玩家的进入,市场从蓝海变成红海,进入存量期。经验驱动的增长模式不再有效。我们以跨境电商为例:由于卖家的剧增和海外市场的饱和,跨境电商进入了库存管理时代。没有绝对的蓝海市场,每个细分领域都有很多竞争对手。
这时候就要求商家从粗放式管理向精细化管理转变,从经验驱动向数据驱动转变。这个变化最重要的一点就是数据,就是用数据分析报告来判断市场是否值得投资,用数据来选择产品,用数据来做商业分析,用数据来管理库存。
从这个角度来说,数据分析已经成为大数据时代所有岗位的通用能力。所以,要想保持竞争力,任何人都有必要用数据分析的能力武装自己:用数据思维分析问题,依靠数据支持决策。
01薪资潜力大
由于数据分析师的专业技能以及对其专业知识的需求不断增长,数据分析师通常拥有具有竞争力的薪资。
02职业发展和机会多
数据分析师通常有明确的职业发展道路,有机会专攻商业智能、数据科学、数据工程等领域,甚至是专注于数据的管理职位。
03不断增长的需求各行各业的企业都在收集大量数据,并且越来越需要分析这些数据来做出明智的决策。数据分析师在解析数据,并从中得出可操作的见解方面发挥着至关重要的作用。
数据分析师的职业目前非常有前途,未来有无限可能!!
想做数据分析师,都要学什么?
Excel,SQL,Python等工具都是数据分析师需要学习和掌握的。因为有了数据思维之后,需要通过一定的工具才能实现相关的思路,所以分析掌握工具也是数据分析师学习过程中重要的一环。
01初级 入门CDA LEVEL I
《职业道德与操守》、《数据库与 SQL 基础》、《统计学(初级)》、《业务数据分析》、《数据可视化》
02进阶CDA Level II
《数据采集与数据处理》、《统计分析》、《商业策略分析》、《数据治理》
03高级CDA LEVEL III
《数据挖掘与高级数据处理》、《自然语言处理与文本分析》、《算法应用与实战》
数据分析师胜任力模型,包括底层认知、业务场景、能力三项三个部分:
首先,底层认知是对数据的基础认知,强调数据思维的应用。
其次,业务场景是指“只有对业务有足够的了解才能进行分析”,包括用户、产品、场景三个方面。
最后是硬实力对应的能力三项,包括工具技术、项目能力、思维方法。
底层认知、业务场景、能力三项共同铸就完整的数据分析能力,相辅相成。