tensorflow转c系列一

tensorflow在深度学习领域是一个应用最为广泛的框架,但是其对于嵌入式端的部署并不是特别友好,因为其训练好的模型没有直接导出工具。本博文主要是针对tensorflow训练好的模型,将其转换到c语言运行,这样便于嵌入式的部署。这里主要是基于arm的软件代码进行c代码部署的,具体参考https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN。该博文以mnist为例进行 讲解,在tensorflow上进行mnist模型训练,然后将训练好的模型部署到c代码中。mnist的tensorflow的具体实现如下:

# -*- coding: utf-8 -*-
"""
Created on Wed Oct  2 11:40:21 2019

@author: Administrator
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange    # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'


def maybe_download(filename, work_directory):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(work_directory):
        os.mkdir(work_directory)
    filepath = os.path.join(work_directory, filename)
    if not os.path.exists(filepath):
        filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
    return filepath


def _read32(bytestream):
    dt = numpy.dtype(numpy.uint32).newbyteorder('>')
    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]


def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                    'Invalid magic number %d in MNIST image file: %s' %
                    (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data


def dense_to_one_hot(labels_dense, num_classes=10):
    """Convert class labels from scalars to one-hot vectors."""
    num_labels = labels_dense.shape[0]
    index_offset = numpy.arange(num_labels) * num_classes
    labels_one_hot = numpy.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot


def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
            raise ValueError(
                    'Invalid magic number %d in MNIST label file: %s' %
                    (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
            return dense_t
<think>好的,我现在需要处理用户关于TensorFlow Lite for Microcontrollers(TFLite Micro)的询问。用户希望了解它的概述和使用方法。首先,我得回忆TFLite Micro的基本信息,它主要是为微控制器设计的轻量级机器学习框架,适用于资源受限的设备。 根据用户提供的引用内容,引用[1]提到TFLite Micro支持低内存和短电池寿命的设备,需要分析模型的峰值内存使用和计算成本。而引用[2]则涉及微控制器的模拟前端设计。这些信息可以帮助我强调TFLite Micro在资源受限环境下的优势,比如内存优化和能效。 接下来,我需要按照系统级指令来组织回答。用户要求使用中文,数学表达式用$...$格式,独立公式用$$...$$,虽然这个问题可能数学内容不多,但如果有相关模型大小或计算量的公式,可能需要用LaTeX。例如,模型的内存占用可以表示为$M = \text{参数数量} \times \text{数据类型大小}$。 然后,生成相关问题,需要围绕TFLite Micro的应用场景、优化方法、性能评估等方面提问。例如,如何优化模型以减少内存占用,或者如何评估模型在微控制器上的性能。 同时,用户要求回答结构清晰,分步骤说明。我需要先概述TFLite Micro,再介绍其核心特性,接着详细使用步骤,最后可能的应用场景。在每个部分中,引用提供的资料来支持内容,比如在内存优化部分引用[1]提到的峰值内存使用分析,或者在部署步骤中结合引用[2]的硬件集成案例。 还要注意代码块的使用,如果有示例代码的话。比如展示如何加载模型或进行推断的代码片段,但用户的问题可能不需要代码,但根据示例中的快速排序,可能用户希望有代码示例。不过TFLite Micro的代码可能涉及C++,需要确认是否有必要加入。 另外,确保回答真实可靠,引用标记正确。例如,在讨论能效时引用[1]的电池寿命和计算成本,或者在硬件集成时引用[2]的模拟前端设计。 最后检查LaTeX语法是否正确,是否有不必要的数学表达式,确保回答符合所有系统指令。现在整理这些思路,形成结构化的回答和相关问题。</think>### TensorFlow Lite for Microcontrollers 概述与使用方法 #### 、概述 TensorFlow Lite for Microcontrollers(TFLite Micro)是专为**资源受限的微控制器**设计的轻量级机器学习框架,支持在内存仅数十KB的设备上部署模型[^1]。其核心目标包括: 1. **低内存占用**:模型通过量化(如8位整型)压缩大小,例如模型内存可表示为: $$M = N_{\text{params}} \times d_{\text{type}}$$ 其中$N_{\text{params}}$为参数量,$d_{\text{type}}$为数据类型大小。 2. **高效能计算**:优化算子(如卷积、全连接)以减少乘加运算(MAC)次数,延长电池寿命[^1]。 3. **跨平台支持**:兼容Arm Cortex-M、ESP32等常见微控制器架构。 #### 二、核心特性 1. **模型换工具链**: - 使用TensorFlow Lite Converter将TensorFlow模型换为`.tflite`格式。 - 通过`xxd`工具生成C语言头文件,便于嵌入微控制器代码。 2. **运行时库**: - 仅需约16KB内存,支持静态内存分配(无动态内存操作)。 - 提供C++ API接口,例如: ```cpp tflite::MicroInterpreter interpreter(model, resolver, tensor_arena, kTensorArenaSize); interpreter.Invoke(); ``` 3. **硬件适配层**:支持自定义算子与传感器驱动集成(如引用[2]中的RFID模拟前端设计)[^2]。 #### 三、使用步骤 1. **模型训练与换** - 在TensorFlow中训练模型,使用`TFLiteConverter`量化并导出为`.tflite`文件。 - 生成C数组:`xxd -i model.tflite > model_data.cc`。 2. **部署到微控制器** - 将模型数据与TFLite Micro库添加到工程中。 - 定义内存缓冲区(Tensor Arena)以存储中间张量: ```cpp constexpr int kTensorArenaSize = 4 * 1024; uint8_t tensor_arena[kTensorArenaSize]; ``` 3. **推断执行** - 初始化解释器并输入数据: ```cpp TfLiteTensor* input = interpreter.input(0); memcpy(input->data.uint8, sensor_data, input->bytes); interpreter.Invoke(); TfLiteTensor* output = interpreter.output(0); ``` #### 四、典型应用场景 1. **关键字识别**:在智能家居设备中实时检测唤醒词。 2. **传感器数据分析**:如引用[2]中的RFID信号处理[^2]。 3. **预测性维护**:通过振动传感器数据预测设备故障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值