高数笔记-第一章 函数与极限-9

第九节 连续函数的运算与初等函数的连续性

连续函数的和、差、积、商的连续性

定理 1 设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在点 x 0 x_0 x0 连续,则它们的和(差) f ± g f\pm g f±g、积 f ⋅ g f\cdot g fg 及商 f g \dfrac {f}{g} gf (当 g ( x 0 ) ≠ 0 g(x_0) \neq 0 g(x0)=0时)都在点 x 0 x_0 x0连续.


反函数的连续性

定理 2 如果函数 y = f ( x ) y = f(x) y=f(x) 在区间 I x I_x Ix 上单调增加(或单调减少)且连续,那么它的反函数 x = f − 1 ( y ) x = f^{-1}(y) x=f1(y) 也在对应的区间 I y = { y   ∣   y = f ( x ) , x ∈ I x } I_y = \{y \ |\ y= f(x), x \in I_x\} Iy={y  y=f(x),xIx} 上单调增加(或单调减少)且连续.


复合函数的连续性
定理 3 设函数 y = f [ g ( x ) ] y = f[g(x)] y=f[g(x)] 由函数 u = g ( x ) u = g(x) u=g(x) 与函数 y = f ( u ) y = f(u) y=f(u) 复合而成, U ˚ ( x 0 ) ⊂ D f ∘ g \mathring{U}(x_0) \subset D_{f \circ g} U˚(x0)Dfg. 若 lim ⁡ x → x 0 g ( x ) = u 0 \lim\limits_{x \to x_0}{g(x)} = u_0 xx0limg(x)=u0,而函数 y = f ( u ) y = f(u) y=f(u) u = u 0 u = u_0 u=u0 连续,则
lim ⁡ x → x 0 f [   g ( x )   ] = lim ⁡ x → x 0 f ( u 0 ) . \lim\limits_{x \to x_0}{f[\ g(x)\ ]} = \lim\limits_{x \to x_0}{f(u_0)}. xx0limf[ g(x) ]=xx0limf(u0).

定理 4 设函数 y = f [   g ( x )   ] y = f[\ g(x)\ ] y=f[ g(x) ] 是由函数 u = g ( x ) u = g(x) u=g(x)与函数 y = f ( u ) y = f(u) y=f(u) 复合而成, U ( x 0 ) ⊂ D f ∘ g U(x_0) \subset D_{f\circ g} U(x0)Dfg. 若函数 u = g ( x ) u = g(x) u=g(x) x = x 0 x = x_0 x=x0 连续,且 g ( x 0 ) = u 0 g(x_0) = u_0 g(x0)=u0,而函数 y = f ( u ) y = f(u) y=f(u) u = u 0 u = u_0 u=u0 连续,则复合函数 y = f [   g ( x )   ] y = f[\ g(x)\ ] y=f[ g(x) ] x = x 0 x = x_0 x=x0 也连续.


初等函数的连续性

一切初等函数在其定义区间内都是连续的.

常用的等价无穷小关系式
ln ⁡ ( 1 + x ) ∼ x ( x → 0 ) \ln(1+x) \sim x \quad (x \to 0) ln(1+x)x(x0).
e x − 1 ∼ x ( x → 0 ) e^x -1 \sim x \quad (x \to 0) ex1x(x0).
( 1 + x ) α − 1 ∼ α x ( x → 0 ) (1+x)^\alpha -1 \sim \alpha x \quad (x \to 0) (1+x)α1αx(x0).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值