HDU 4679 String

String

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 695    Accepted Submission(s): 254


Problem Description
Given 3 strings A, B, C, find the longest string D which satisfy the following rules:
a) D is the subsequence of A
b) D is the subsequence of B
c) C is the substring of D
Substring here means a consecutive subsequnce.
You need to output the length of D.
 

Input
The first line of the input contains an integer T(T = 20) which means the number of test cases.
For each test case, the first line only contains string A, the second line only contains string B, and the third only contains string C.
The length of each string will not exceed 1000, and string C should always be the subsequence of string A and string B.
All the letters in each string are in lowercase.
 

Output
For each test case, output Case #a: b. Here a means the number of case, and b means the length of D.
 

Sample Input
  
  
2 aaaaa aaaa aa abcdef acebdf cf
 

Sample Output
  
  
Case #1: 4 Case #2: 3
Hint
For test one, D is "aaaa", and for test two, D is "acf".
 

Source
 

>Recommend
zhuyuanchen520
   
  
    祭奠一下这个题
#include <iostream>
#include <string>
#include <cstring>
#include <cstdio>
#define N 1100
using namespace std;
string s1,s2,s3,s4,s5;
char temp[N];
int num1[N][N],num2[N][N];
struct num
{
    int sta,end;
} a[N],b[N];
int main()
{
    //freopen("data.in","r",stdin);
    void get(int (*p)[N],string ch1,string ch2);
    int t,tem=1;
    scanf("%d",&t);
    while(t--)
    {
        cin>>s1>>s2>>s3;
        get(num1,s1,s2);
        int l1 = s1.size();
        for(int i=0; i<=l1-1; i++)
        {
            temp[l1-1-i] = s1[i];
        }
        temp[l1] = '\0';
        s4 = temp;
        int l2 = s2.size();
        for(int i=0; i<=l2-1; i++)
        {
            temp[l2-1-i] = s2[i];
        }
        temp[l2] = '\0';
        s5 = temp;
        get(num2,s4,s5);
        int l3 = s3.size(),Top1=0,Top2=0;
        for(int i=0; i<=l1-1; i++)
        {
            if(s1[i]==s3[0])
            {
                int x = 0;
                int sta = i;
                int end = -1;
                for(int j=i; j<=l1-1&&x<=l3-1; j++)
                {
                    if(s1[j]==s3[x])
                    {
                        x++;
                    }
                    if(x==l3)
                    {
                        end = j;
                    }
                }
                if(end==-1)
                {
                    continue;
                }
                a[Top1].sta = sta;
                a[Top1++].end = end;
            }
        }
        for(int i=0; i<=l2-1; i++)
        {
            if(s2[i]==s3[0])
            {
                int x = 0;
                int sta = i;
                int end = -1;
                for(int j=i; j<=l2-1&&x<=l3-1; j++)
                {
                    if(s2[j]==s3[x])
                    {
                        x++;
                    }
                    if(x==l3)
                    {
                        end = j;
                    }
                }
                if(end==-1)
                {
                    continue;
                }
                b[Top2].sta = sta;
                b[Top2++].end = end;
            }
        }
        int res = l3,Max=0;
        for(int i=0; i<=Top1-1; i++)
        {
            for(int j=0; j<=Top2-1; j++)
            {
                int x1 = a[i].sta;
                int y1 = a[i].end;
                int x2 = b[j].sta;
                int y2 = b[j].end;
                int k1 = 0;
                if(x1>0&&x2>0)
                {
                    k1 = num1[x1-1][x2-1];
                }
                int k2 = 0;
                if(y1<l1-1&&y2<l2-1)
                {
                    k2 = num2[l1-2-y1][l2-2-y2];
                }
                Max = max(Max,res+k2+k1);
            }
        }
        printf("Case #%d: %d\n",tem++,Max);
    }
    return 0;
}
void get(int (*p)[N],string ch1,string ch2)
{
    int l1 = ch1.size();
    int l2 = ch2.size();
    memset(p,0,sizeof(p));
    for(int i=0; i<=l1-1; i++)
    {
        for(int j=0; j<=l2-1; j++)
        {
            if(i==0&&j==0)
            {
                if(ch1[i]==ch2[j])
                {
                    p[i][j] = 1;
                }
            }
            else if(i==0&&j!=0)
            {
                if(ch1[i]==ch2[j])
                {
                    p[i][j] = 1;
                }
                else
                {
                    p[i][j] = p[i][j-1];
                }
            }
            else if(i!=0&&j==0)
            {
                if(ch1[i]==ch2[j])
                {
                    p[i][j] = 1;
                }
                else
                {
                    p[i][j] = p[i-1][j];
                }
            }
            else
            {
                if(ch1[i]==ch2[j])
                {
                    p[i][j] = p[i-1][j-1]+1;
                }
                else
                {
                    p[i][j] = max(p[i][j-1],p[i-1][j]);
                }
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值