基于产生式规则和Python的小型昆虫识别系统
摘要
本文拟采用产生式规则并基于Python设计实现一个简单的产生式昆虫识别系统。
1 介绍
产生式由美国数学家波斯特(E.POST)在1934年首先提出,它根据串代替规则提出了一种称为波斯特机的计算模型,模型中的每条规则称为产生式。
1972年,纽厄尔和西蒙在研究人类的认知模型中开发了基于规则的产生式系统,产生式表示法已经成了人工智能中应用最多的一种知识表示模式,尤其是在专家系统方面,许多成功的专家系统都是采用产生式知识表示方法。产生式的基本形式P→Q 或者 IF P THEN Q,P是产生式的前提,也称为前件,它给出了该产生式可否使用的先决条件,由事实的逻辑组合来构成;Q是一组结论或操作,也称为产生式的后件,它指出当前提P满足时,应该推出的结论或应该执行的动作。产生式的含义如果前提P满足,则可推出结论Q或执行Q所规定的操作。
本文将基于python设计并实现一个用于识别昆虫的产生式系统。
2 设计
本文的产生式系统由规则库、控制系统、综合数据库三部分组成,其之间的关系如图.1所示;
完整源代码见本文附录.1.
图.1. 规则库、控制系统、综合数据库之间的关系
2.1 规则库
2.1.1 条件
本项设计采用list储存规则库的所有条件(特征),并为每个条件分配一个id,条件的全部内容如表.1所示。
表.1 规则库条件 | |
---|---|
昆虫个体 | 中华盗虻、麻蝇、中华按蚊、巨圆臀大蜓、牛虻、绿蝇、乐仙蜻蜓、东亚飞蝗 |
昆虫目类 | 双翅目、直翅目、蜻蜓目、虻类、蚊类、蝇类 |
区别个体的特征 | 飞行快、尾部亮黑、有斑点、下唇黄褐色、体黄褐色、背棕黑、胸深蓝色、暗色斑纹、雌额宽、体青绿色 |
区别目类特征 | 只有一对翅膀、前翅狭长、翅膀膜质透明、翅膀多、粗壮、头部半球形、复眼、刺吸式口器 |
2.1.2 条件和结论
本项研究设计了规则类(rule),储存条件列表和结论
class rule:
def __init__(self,p,q):
self.__p=p
self.__q=q
def get_p(self):
return self.__p
def get_q(self):
return self.__q
规则内容如表.2所示。
表.2 规则内容 |
---|
R1:IF 只有一对翅膀 THEN双翅目 |
R2:IF 前翅狭长 THEN直翅目 |
R3:IF 翅膀膜质透明 AND翅膀 THEN蜻蜓目 |
R4:IF 双翅目 AND粗壮 THEN虻类 |
R5:IF 双翅目 AND头部半球形 THEN蝇类 |
R6:IF 双翅目 AND复眼 THEN蝇类 |
R7:IF 双翅目 AND刺吸式口器 THEN蚊类 |
R8:IF 双翅目 AND虻类AND飞行快 THEN中华盗虻 |
R9:IF 双翅目 AND尾部亮黑AND背棕黑AND雌额宽 THEN麻蝇 |
R10:IF 双翅目 AND蚊类AND有斑点AND飞行快 THEN中华按蚊 |
R10:IF 双翅目 AND蚊类AND有斑点AND飞行快 THEN中华按蚊 |
R11:IF 蜻蜓目 AND尾部亮黑AND下唇黄褐色 THEN巨圆臀大蜓 |
R12: IF 双翅目 AND虻类AND体黄褐色AND背棕黑AND雌额宽 THEN牛虻 |
R13:IF双翅目 AND蝇类AND青绿色AND背棕黑AND雌额宽 THEN绿蝇 |
R14:IF蜻蜓目 AND尾部亮黑AND背棕黑AND胸深蓝色 THEN乐仙蜻蜓 |
R15:IF直翅目 AND体黄褐色AND暗色斑纹AND雌额宽 THEN东亚飞蝗 |
2.2 综合数据库
综合数据库由人为输入,并在后续传入昆虫识别系统中。
synthesis_database = list(map(lambda x:int(x),list(input().split(' '))))
2.3 控制系统
控制系统由一组Python程序组成,负责整个产生式系统的运行。
2.3.1 规则类-规则匹配函数(matching)
对于表.2中的每项规则R,可传入综合数据库(已有特征)进行条件匹配,如果对于条件中的每一项特征都存在于综合数据库中,则匹配成功,反之亦然。
def matching(self,feture):
cnt = 0;
for i in self.__p:
if i in feture:
cnt+=1
if cnt==len(self.__p):
return self.__q;
else:
return -1
2.3.2 昆虫识别系统(insect_recognition_system)
2.3.2.1 初始化内容
该系统传入规则库条件和内容
class insect_recognition_system:
def __init__(self,name,feature,rule):
self.__name=name
self.__feature=feature
self.__rule=rule
2.3.2.2 正向推理设计
可将任意综合数据库传入正向推理函数(forward_reasoning)中,对于self.__rule中的每条规则,将综合数据库传入将该条规则的matching函数进行匹配,若匹配成功(返回值不为-1),则将该条规则的结论特征添加到综合数据库中。直到识别出具体的昆虫个体,若所有的规则都进行了尝试匹配仍识别不出任何昆虫个体,说明输入的综合数据库特征不足,此时无法识别。
def forward_reasoning(self,synthesis_database):
for r in self.__rule:
result = r.matching(synthesis_database)
if result!=-1:
t=r.get_p()
for f in t:
if f != t[-1]:
print(self.__feature[f],end=' & ')
else:
print(self.__feature[f],end='')
print(' -> {}'.format(self.__feature[result]))
if self.__feature[result] in self.__name:
return self.__feature[result]
synthesis_database.append(result)
print('特征不足,推理失败.')
2.3.3 程序运行框架
程序先传入规则库建立模型(昆虫识别系统),并等待用户输入,对于输入的特征进行正向推理,输入-1时结束程序。
def run():
model=insect_recognition_system(name,feature,R)
while 1:
print("\n请输入综合数据库(特征之间以空格隔开)(输入-1结束程序)")
synthesis_database = list(map(lambda x:int(x),list(input().split(' '))))
if -1 in synthesis_database:
print('程序已结束')
break
else:
model.forward_reasoning(synthesis_database)
3 实验和成果
此项研究进行了大量规则匹配实验,结果均符合预期,在此仅仅选出个别结果作为例子。
3.1 当输入特征部分匹配规则库
输入10 14 0,程序执行结果如图.2所示
图.2 运行结果示例图
3.2 当输入特征完全匹配规则库
输入19 4 7 8,程序执行结果如图.3所示
图.3 运行结果示例图
3.3 当输入特征不足
输入10 16,程序执行结果如图.4所示
图.4 运行结果示例图
4 总结与展望
本次研究成成功的实了基于python的产生式昆虫识别系统,能够在特征条件合理的前提下精准识别出具体的一些昆虫个体,当特征条件不足时,此系统仍然可以继续向最深层次结论进行正向推理。不足之处是规则库内容较小,只能识别部分昆虫,在特征条件不足时不能进行反向推理,我将在日后的工作中继续探索并改进本项目推理方法,做出更完美的产生式昆虫识别系统。
附录
附录.1
class rule:
def __init__(self,p,q):
self.__p=p
self.__q=q
def get_p(self):
return self.__p
def get_q(self):
return self.__q
def matching(self,feture):
cnt = 0;
for i in self.__p:
if i in feture:
cnt+=1
if cnt==len(self.__p):
return self.__q;
else:
return -1
class insect_recognition_system:
def __init__(self,name,feature,rule):
self.__name=name
self.__feature=feature
self.__rule=rule
def forward_reasoning(self,synthesis_database):
for r in self.__rule:
result = r.matching(synthesis_database)
if result!=-1:
t=r.get_p()
for f in t:
if f != t[-1]:
print(self.__feature[f],end=' & ')
else:
print(self.__feature[f],end='')
print(' -> {}'.format(self.__feature[result]))
if self.__feature[result] in self.__name:
return self.__feature[result]
synthesis_database.append(result)
print('特征不足,推理失败.')
feature=[
"飞行快", "尾部亮黑", "有斑点", "下唇黄褐色", "体黄褐色", "背棕黑", "胸深蓝色", "暗色斑纹", "雌额宽", "体青绿色",
# 0 1 2 3 4 5 6 7 8 9
"只有一对翅膀", "前翅狭长", "翅膀膜质透明", "翅膀多", "粗壮", "头部半球形", "复眼", "刺吸式口器",
# 10 11 12 13 14 15 16 17
"双翅目", "直翅目", "蜻蜓目", "虻类", "蚊类", "蝇类",
# 18 19 20 21 22 23
"中华盗虻", "麻蝇", "中华按蚊", "巨圆臀大蜓", "牛虻", "绿蝇", "乐仙蜻蜓", "东亚飞蝗"
# 24 25 26 27 28 29 30 31
]
name=["中华盗虻", "麻蝇", "中华按蚊", "巨圆臀大蜓", "牛虻", "绿蝇", "乐仙蜻蜓", "东亚飞蝗"]
R=[
rule([10],18),
rule([11],19),
rule([12,13],20),
rule([18,14],21),
rule([18,15],22),
rule([18,16],22),
rule([18,17],23),
rule([18,21,0],24),
rule([18,1,5,8],25),
rule([18,2,0],26),
rule([20,1,3],27),
rule([18,21,4,5,8],28),
rule([20,1,5,6],30),
rule([19,4,7,8],31),
]
def run():
model=insect_recognition_system(name,feature,R)
while 1:
print("\n请输入综合数据库(特征之间以空格隔开,输入-1结束程序):")
synthesis_database = list(map(lambda x:int(x),list(input().split(' '))))
if -1 in synthesis_database:
print('程序已结束')
break
else:
model.forward_reasoning(synthesis_database)
if __name__ == '__main__':
run()
`