基于PyTorch实现LeNet、AlexNet、ResNet完成MNIST手写字体识别任务

本文详细介绍了如何使用PyTorch实现LeNet、AlexNet和ResNet三种卷积神经网络,对MNIST手写数字数据集进行识别。通过数据预处理、模型构建、训练和评估,展示了不同网络结构对模型性能的影响,并对PyTorch与其他自定义深度学习框架的差异进行了比较。实验结果表明,网络结构的调整可以影响模型的训练效果和收敛速度。
摘要由CSDN通过智能技术生成

基于PyTorch实现LeNet、AlexNet、ResNet完成MNIST手写字体识别任务

引言

​ 本文基于PyTorch实现LeNet、AlexNet、ResNet完成MNIST手写字体识别任务。1节中说明了数据集的处理方法,2节说明了算法的设计思路,3节给出了LeNet、AlexNet、ResNet的实现代码,最后分析了采用Pytorch框架与自己手写的深度学习框架的不同,4节中对各个卷积网络进行训练,给出了训练结果和可视化结果,其中对LeNet网络结构进行了一些不同的调整和训练,5节中是本项目的一些总结,文末在附录中给出了本项目的所有代码。

1 数据集

​ 简便起见,直接使用torchvision.datasets中封装好的MNIST()来加载MNIST的ubyte格式的数据集,定义数据集加载函数load_data_mnist,代码如下:

def load_data_mnist(batch_size, resize=None):
    num_workers = 4
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.MNIST(root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.MNIST(root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=num_workers),
            data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=num_workers))

2 算法设计

2.1 train_one_epoch

​ 定义train_one_epoch函数,实现对所有数据的一次训练迭代,返回该次迭代的训练损失和数据集ACC,代码如下:

def train_one_epoch(net, train_iter, device, optimizer, loss):
    train_l = 0.0
    train_ac = 0.0
    cnt = 0
    for i, (X, y) in enumerate(train_iter):
        net.train()
        optimizer.zero_grad()
        X, y = X.to(device), y.to(device)
        y_hat = net(X)
        l = loss(y_hat, y)
        l.backward()
        optimizer.step()

        train_l += l.item()
        train_ac += torch.sum((torch.argmax(y_hat, dim=1) == y)).item()
        cnt += len(y)

    return train_l/len(train_iter), train_ac/cnt

2.2 evaluate_accuracy

​ 定义evaluate_accuracy函数,以对每一次调用完train_one_epoch函数后,对测试集(验证集)进行模型ACC的评估并返回,代码实现如下:

def evaluate_accuracy(net, data_iter, device=None):
    net.eval()
    if not device:
        device = next(iter(net.parameters())).device
    ac, cnt = 0.0, 0
    for X, y in data_iter:
        X, y = X.to(device), y.to(device)
        Z = torch.argmax(net(X), dim=1)
        ac += torch.sum(Z == y).item()
        cnt += len(y)
    return ac/cnt

2.3 train

​ 定义train函数,实现对模型整个训练过程的控制,首先对网络的卷积和全连接层采用xavier初始化,定义优化器、损失函数,随后进行num_epochs次训练迭代,对每个epoch的迭代,依次调用train_one_epoch函数和evaluate_accuracy函数并记录训练过程,最后用matplotlib对训练过程可视化,具体的实现代码如下;

def train(net, train_iter, test_iter, num_epochs, lr, device):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            torch.nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)

    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()

    # 用来保存训练以及验证过程中信息
    results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

    trl, tra, tea = [], [], []
    for epoch in range(num_epochs):
        train_l, train_acc = train_one_epoch(net, train_iter, device, optimizer, loss)
        test_acc = evaluate_accuracy(net, test_iter, device)
        trl.append(train_l), tra.append(train_acc), tea.append(test_acc)
        # print(epoch, train_l, train_acc, test_acc)
        with open(results_file, "a") as f:
            f.write(f'epoch {epoch}  loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f} \n')

    print(f'epoch {epoch}  loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f} \n')

    plt.xlabel = 'epoch'
    xlim = range(0, num_epochs)
    legend = ['train loss', 'train acc', 'test acc']
    plt.plot(xlim, trl, linewidth=1, color='purple')
    plt.plot(xlim, tra, linewidth=1, color='green', linestyle='--')
    plt.plot(xlim, tea, linewidth=1, color='blue', linestyle='--')
    plt.legend(legend, ncol=4)
    plt.grid(axis='y', linewidth=0.3)
    plt.xticks(range(0, num_epochs, 2))
    plt.show()

2.4 程序入口

​ 以LeNet为例,定义好批大小batch_size、 学习率lr、迭代次数num_epochs、调用load_data_mnist函数加载数据集得到train_iter, test_iter,再把这些参数传入train函数即可,代码如下,其中try_gpu函数用于检验cuda是否可用:

if __name__ == '__main__':

    def try_gpu():
        if torch.cuda.device_count() >= 1:
            return torch.device('cuda:0')
        return torch.device('cpu')

    net = LeNet5
    batch_size = 256
    train_iter, test_iter = load_data_mnist(batch_size=batch_size)
    lr, num_epochs = 0.9, 10
    train(net, train_iter, test_iter, num_epochs, lr, try_gpu())

3 模型实现

3.1 LeNet

​ 搭建LeNet模型的代码如下:

import torch
from torch import nn
from torch.nn import functional as F

LeNet5 = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

3.2 AlexNet

​ 搭建AlexNet模型的代码如下:

AlexNet = nn.Sequential(
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 10))

3.3 ResNet

​ 搭建ResNet模型的代码如下:

class Residual(nn.Module):
    def __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
            kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))


def resnet_block(input_channels, num_channels, num_residuals,
    first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

ResNet18 = nn.Sequential(b1, b2, b3, b4, b5,
        nn.AdaptiveAvgPool2d((1,1)),
        nn.Flatten(), nn.Linear(512, 10))

3.4 简要说明PyTorch框架与作业02的不同

​ 我认为PyTorch框架与自己手写的精简版深度框架最不大区别同是以下5点:

​ 1) PyTorch能够调用GPU进行矩阵的快速运算,使得神经网络训练迅速;

​ 2) PyTorch功能齐全,激活函数,优化器,损失函数,初始化方法等很齐全,配套的其他库也很多;

​ 3) PyTorch生态好,使用者众多,能在网络中快速找到问题的解决办法;

​ 4) PyTorch能够自动计算梯度,模块化设计得很好,搭建模型十分方便;

​ 5) PyTorch一直在更新,能够不断适应最新的深度学习模型,如图神经网络等。

4 模型训练及结果

4.1 训练LeNet

4.1.1 使用原始的LeNet5的网络结构进行训练

​ 训练的一些参数如下:

	net = LeNet5
    batch_size = 256
    train_iter, test_iter = load_data_mnist(batch_size=batch_size)
    lr, num_epochs = 0.6, 20
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()

​ 训练最终结果:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jkIBN831-1682870518342)(E:/typora-image/image-20230430210026789.png)]

​ 训练过程可视化如下:

在这里插入图片描述

4.1.2 调整LeNet5的网络结构进行训练

​ 本小节模型训练所需参数与4.1.1节中的保持不变,尝试改变卷积核大小、输出通道数、激活函数、卷积层或全连接层数量进行训练。

4.1.2.1 调整卷积核大小

​ 将LeNet5中卷积非池化层的卷积核大小改为3。

	kernel_size=3

​ 训练最终结果:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-X4SnO5KM-1682870518344)(E:/typora-image/image-20230430230814355.png)]

​ 训练过程可视化如下:

在这里插入图片描述

4.1.2.2 调整输出通道数

​ 将LeNet5中卷积层的输出通道数改为原来的一半。

	nn.Conv2d(1, 6//2, kernel_size=5, padding=2) # 卷积层1
    nn.Conv2d(6//2, 16//2, kernel_size=5) # 卷积层2

​ 训练最终结果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/0b93b74f16534f2ea033dffe2dba8eb3.png#pic_center

​ 训练过程可视化如下:

在这里插入图片描述

4.1.2.3 调整激活函数

​ 将LeNet5中的sigmoid激活函数换成ReLU

​ 训练最终结果:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Y2EdJg6A-1682870518346)(E:/typora-image/image-20230430235456762.png)]

​ 训练过程可视化如下:
在这里插入图片描述

4.1.2.4 调整卷积层或全连接层数量

​ 减少卷积层与全连接层数量,均减少为1。

    LeNet5_04 = nn.Sequential(
        nn.Conv2d(1, 16, kernel_size=5, padding=2), nn.Sigmoid(),
        nn.AvgPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(3136, 10))

​ 训练最终结果:![在这里插入图片描述](https://img-blog.csdnimg.cn/d767d779c8a247a885227f90038d7fbc.png#pic_center

​ 训练过程可视化如下:

在这里插入图片描述

4.2 训练AlexNet

​ 训练的一些参数如下:

    net = AlexNet
    batch_size = 128
    train_iter, test_iter = load_data_mnist(batch_size=batch_size, resize=224)
    lr, num_epochs = 0.01, 10
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()

​ 训练最终结果:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RLA2zfeb-1682870518347)(E:/typora-image/image-20230430220326417.png)]

​ 训练过程可视化如下:

在这里插入图片描述

4.3 训练ResNet

​ 训练的一些参数如下:

    net = ResNet18
    batch_size = 256
    train_iter, test_iter = load_data_mnist(batch_size=batch_size, resize=96)
    lr, num_epochs = 0.05, 10
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()

​ 训练最终结果:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-psJMwZGW-1682870518348)(E:/typora-image/image-20230430222303506.png)]

​ 训练过程可视化如下:

在这里插入图片描述

5 小结

​ 从4中结果可以看出,不同的网络结果将对模型的训练效果有影响,其次,模型越复杂,其收敛速度越快,精度越高。最后:PyTorch很好用。

附录

​ 完整代码

model.py

import torch
from torch import nn
from torch.nn import functional as F

LeNet5 = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

LeNet5_01 = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=3, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=3), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(576, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

LeNet5_02 = nn.Sequential(
    nn.Conv2d(1, 6//2, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6//2, 16//2, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16//2 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

LeNet5_03 = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.ReLU(),
    nn.Linear(120, 84), nn.ReLU(),
    nn.Linear(84, 10))

LeNet5_04 = nn.Sequential(
    nn.Conv2d(1, 16, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(3136, 10))

AlexNet = nn.Sequential(
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 10))


class Residual(nn.Module):
    def __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
            kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))


def resnet_block(input_channels, num_channels, num_residuals,
    first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

ResNet18 = nn.Sequential(b1, b2, b3, b4, b5,
        nn.AdaptiveAvgPool2d((1,1)),
        nn.Flatten(), nn.Linear(512, 10))

main.py

import datetime
import matplotlib.pylab as plt
import torch
import torchvision
from torch import nn
from torch.utils import data
from torchvision import transforms
from model import LeNet5, AlexNet, ResNet18, LeNet5_01, LeNet5_02, LeNet5_03, LeNet5_04


def load_data_mnist(batch_size, resize=None):
    num_workers = 4
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.MNIST(root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.MNIST(root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=num_workers),
            data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=num_workers))


def evaluate_accuracy(net, data_iter, device=None):
    net.eval()
    if not device:
        device = next(iter(net.parameters())).device
    ac, cnt = 0.0, 0
    for X, y in data_iter:
        X, y = X.to(device), y.to(device)
        Z = torch.argmax(net(X), dim=1)
        ac += torch.sum(Z == y).item()
        cnt += len(y)
    return ac/cnt


def train_one_epoch(net, train_iter, device, optimizer, loss):
    train_l = 0.0
    train_ac = 0.0
    cnt = 0
    for i, (X, y) in enumerate(train_iter):
        net.train()
        optimizer.zero_grad()
        X, y = X.to(device), y.to(device)
        y_hat = net(X)
        l = loss(y_hat, y)
        l.backward()
        optimizer.step()

        train_l += l.item()
        train_ac += torch.sum((torch.argmax(y_hat, dim=1) == y)).item()
        cnt += len(y)

    return train_l/len(train_iter), train_ac/cnt


def train(net, train_iter, test_iter, num_epochs, lr, device):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            torch.nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)

    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()

    # 用来保存训练以及验证过程中信息
    results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

    trl, tra, tea = [], [], []
    for epoch in range(num_epochs):
        train_l, train_acc = train_one_epoch(net, train_iter, device, optimizer, loss)
        test_acc = evaluate_accuracy(net, test_iter, device)
        trl.append(train_l), tra.append(train_acc), tea.append(test_acc)
        # print(epoch, train_l, train_acc, test_acc)
        with open(results_file, "a") as f:
            f.write(f'epoch {epoch}  loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f} \n')

    print(f'epoch {epoch}  loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f} \n')

    plt.xlabel = 'epoch'
    xlim = range(0, num_epochs)
    legend = ['train loss', 'train acc', 'test acc']
    plt.plot(xlim, trl, linewidth=1, color='purple')
    plt.plot(xlim, tra, linewidth=1, color='green', linestyle='--')
    plt.plot(xlim, tea, linewidth=1, color='blue', linestyle='--')
    plt.legend(legend, ncol=4)
    plt.grid(axis='y', linewidth=0.3)
    plt.xticks(range(0, num_epochs, 2))
    plt.show()


if __name__ == '__main__':

    def try_gpu():
        if torch.cuda.device_count() >= 1:
            return torch.device('cuda:0')
        return torch.device('cpu')

    net = LeNet5
    batch_size = 256
    train_iter, test_iter = load_data_mnist(batch_size=batch_size)
    lr, num_epochs = 0.6, 20
    train(net, train_iter, test_iter, num_epochs, lr, try_gpu())

    # net = AlexNet
    # batch_size = 128
    # train_iter, test_iter = load_data_mnist(batch_size=batch_size, resize=224)
    # lr, num_epochs = 0.01, 10
    # train(net, train_iter, test_iter, num_epochs, lr, try_gpu())

    # net = ResNet18
    # batch_size = 256
    # train_iter, test_iter = load_data_mnist(batch_size=batch_size, resize=96)
    # lr, num_epochs = 0.05, 10
    # train(net, train_iter, test_iter, num_epochs, lr, try_gpu())

参考文献

[1] 胡晓武等.智能之门:神经网络与深度学习入门:基于Python〔M〕.北京∶高等教育出版社,2020.12 ;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值